Счастливое число

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории чисел счастливое число — натуральное число из множества, генерируемого «решетом», аналогичным решету Эратосфена, которое генерирует простые числа.

Процесс начинается с полного списка натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, …

Каждое второе число (все чётные числа) исключается, остается только нечётные числа:

1,    3,    5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   25,   

Второй член в этой последовательности — число 3. Каждое третье число, которое остаётся в списке, исключается:

1,    3,          7,    9,         13,   15,         19,   21,         25,

Теперь третье оставшееся число — 7, поэтому каждый седьмой номер, который остался, исключается:

1,    3,          7,    9,         13,   15,               21,         25,

Процедура постоянно повторяется; остающиеся числа — и есть счастливые числа:

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, … (последовательность A000959 в OEIS).
Анимация выявления счастливых чисел. Числа в красном квадрате являют собой счастливые числа.

В 1955 году термин был предложен в работе Гардинера, Лазаруса, Метрополиса и Улама. Также они предложили назвать это решето решетом Иосифа Флавия[1] из-за его схожести со считалкой в задаче Иосифа Флавия.

Счастливые числа делятся с простыми числами многими своими свойствами[2]. Например, их асимптотическая плотность равна то есть совпадает с асимптотической плотностью простых чисел; счастливые числа-близнецы и простые числа-близнецы также появляются с близкой частотой. Пары счастливых чисел, отличающихся на 4, 6, 8 и т. д., появляются с частотой, близкой к частоте соответствующих пар простых чисел. На счастливые числа может быть распространена версия проблемы Гольдбаха[2]. Существует бесконечное множество счастливых чисел. Из-за этих очевидных связей с простыми числами, некоторые математики предположили, что эти свойства могут быть найдены в более широком классе множеств этих чисел, сгенерированных решетом неизвестного вида, хотя теоретические основания для этой гипотезы малы.

Счастливое простое число — это счастливое число, которое является простым. Неизвестно, бесконечно ли множество счастливых простых чисел. Первые числа этой последовательности:

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, … (последовательность A031157 в OEIS).

Примечания[править | править вики-текст]

  1. V. Gardiner, R. Lazarus, N. Metropolis and S. Ulam, «On certain sequences of integers defined by sieves», Mathematics Magazine 29:3 (1955), pp. 117—122.
  2. 1 2 Нерешённые математические задачи, 1964, с. 137-138.

Литература[править | править вики-текст]

  • С. Улам. Нерешённые математические задачи = A Collection of Mathematical Problems / Перевод с английского З. Я. Шапиро. — М.: Наука, 1964. — 168 с. — (Современные проблемы математики).

Ссылки[править | править вики-текст]