Тропическая геометрия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Тропическая прямая на плоскости

Тропическая геометрия — появившаяся в 2000-е годы область в математике, исходно возникшая в информатике, и связанная с алгебраической и симплектической геометрией. Исследуемые в ней объекты являются пределом образов амёб обычных алгебраических многообразий при вырождении последних.[1]

Название «тропическая» отдаёт честь бразильской школе[1] — пионерским работам бразильского математика венгерского происхождения Имре Шимона[pt][2][3][4], исследовавшего тропическое полукольцо в связи с вопросами информатики и теории оптимизации[5].

Основные понятия[править | править вики-текст]

  • Тропический многочлен степени на плоскости — кусочно-аффинная функция вида

Аналогично, тропический многочлен в общем случае — кусочно-аффинная функция вида

  • Тропическая кривая на плоскости, соответствующая данному тропическому многочлену степени  — граф на плоскости, вершины и рёбра (конечные и бесконечные) которого образуют множество точек негладкости функции . Рёбра этого графа считаются снабжёнными кратностями: ребро, разделяющее области линейности, отвечающие набору степеней и , снабжается кратностью, равной наибольшему общему делителю разностей и .
  • В частности, тропическая прямая есть объединение трёх лучей, исходящих из некоторой точки и направленных вниз, влево и вправо-вверх под 45°. Тропические прямые обладают свойствами, аналогичными свойствам обычных прямых: через любые две точки общего положения проходит ровно одна тропическая прямая, и две тропические прямые общего положения пересекаются в единственной точке.

Примечания[править | править вики-текст]

Литература[править | править вики-текст]