Угол Вайнберга

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Угол Вайнберга θW и соотношения между константами связи g, g′ и e = gsin θW

У́гол Ва́йнберга или у́гол сме́шивания сла́бого взаимоде́йствия — параметр в теории электрослабого взаимодействия Вайнберга — Салама, обычно обозначающийся θW, один из свободных параметров Стандартной модели элементарных частиц. Это угол, на который спонтанное нарушение электрослабой симметрии поворачивает начальную плоскость нейтральных векторных бозонов W0
и B0, создавая в результате Z0-бозон и фотон.

Каждое из слагаемых оператора нейтрального тока представляет собой сумму векторного оператора с множителем и аксиального оператора с множителем , где  — третья проекция так называемого слабого изотопического спина,  — электрический заряд частицы,  — угол Вайнберга. Угол определяет структуру нейтральных токов и связь между константами g и e слабого и электромагнитного взаимодействий, соответственно[1]:

.

Угол Вайнберга также задаёт отношение между массами W±- и Z0-бозонов[2]:

Угол Вайнберга может быть выражен через константы связи групп и (g и g′, соответственно):

and

Значение θW является «бегущей константой», то есть зависит от передачи импульса Q в реакции, в которой оно измеряется. Эта зависимость является ключевым предсказанием теории электрослабых взаимодействий. Наиболее точные измерения выполнены в экспериментах на электрон-позитронных коллайдерах при значении Q = 91,2 ГэВ/c, соответствующем массе Z-бозона.

На практике более часто используется квадрат синуса угла Вайнберга, sin2 θW. На 2004 год наилучшая оценка этой величины sin2 θW = 0,23120 ± 0,00015 (при Q = 91,2 ГэВ/c, в рамках модифицированной схемы минимального вычитания[en]). Эксперименты по изучению несохранения чётности в атомных переходах (т.е. при околонулевой передаче импульса) дают значение угла Вайнберга с гораздо худшей точностью, не позволяющей определить зависимость бегущей константы от энергии. В эксперименте по изучению асимметрии мёллеровского рассеяния[en] при Q = 0,16 ГэВ/c установлено значение sin2 θW = 0,2397 ± 0,0013[3], достоверно отличающееся от вышеприведённого значения, полученного при высоких энергиях, и позволяющее установить зависимость угла Вайнберга от энергии.

В эксперименте LHCb на Большом адронном коллайдере в протон-протонных столкновениях при 7—8 ТэВ было получено значение эффективного угла Вайнберга {{nobr|sin2 θeff
W
= 0,23142
, однако передача импульса в этом измерении определяется энергией столкновения партонов, которая близка к массе Z-бозона.

Последняя редакция стандартного набора фундаментальных констант CODATA-2014 даёт значение

Следует отметить, что конкретное значение угла Вайнберга является не предсказанием Стандартной модели, а её свободным параметром. В настоящее время не существует общепризнанной теории, отвечающей на вопрос, почему угол Вайнберга имеет именно это значение, а не какое-либо иное.

См. также[править | править код]

Примечания[править | править код]

  1. Л. Б. Окунь. Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 552–556. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Окунь Л. Б. Лептоны и кварки. — Главная редакция физико-математической литературы изд-ва «Наука», 1981.
  3. Anthony P. L. et al. (2005). «Precision Measurement of the Weak Mixing Angle in Møller Scattering». Phys. Rev. Lett. (American Physical Society) 95 (8): 081601. arXiv:hep-ex/0504049. DOI:10.1103/PhysRevLett.95.081601. PMID 16196849. Bibcode2005PhRvL..95h1601A.

Ссылки[править | править код]