Корневые клубеньки: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Содержимое удалено Содержимое добавлено
Создано переводом страницы «Root nodule»
(нет различий)

Версия от 10:43, 23 декабря 2017

Поперечный срез корневого клубенька сои (Соя культурная 'Эссекс'). Бактерия, Bradyrhizobium japonicum, поселяясь на корнях, образует азотфиксирующие симбиозы. На увеличенном фрагменте изображения видна часть клетки с одиночными бактероидами внутри своих симбиосом. На данной фотографии можно видеть, эндоплазматический ретикулум, диктисому и клеточную стенку.
Азот является самым труднодоступным веществом для растений. Бобовые для борьбы с нехваткой азота, используют азотфиксирующие бактерии. В частности, симбиотические клубеньковые бактерии, которые обитают в корневых клубеньках. Клубеньковые бактерии фиксируют азот, который затем преобразуется в аммиак. Далее аммиак используется для постройки нуклеотидов, аминокислот, витаминов и флавонов, которые необходимы для роста растений. Клетки корня растения превращают сахар в органические кислоты, которые затем поставляются клубеньковым бактериям в обмен на азот, поэтому отношения между клубеньковыми бактериями и представителями бобовых можно назвать симбиотическими.

Клубеньки встречаются на корнях растений (преимущественно у представителей семейства бобовые), которые ассоциированы  с симбиотическими азотфиксирующими бактериями. В условиях недостатка азота, растения образуют симбиотическую связь со специфичным для них штаммом бактерий, известным как клубеньковые бактерии. Такой симбиоз уже развивался несколько раз внутри семейства бобовых, а также у других видов, относящихся к подклассу Розиды.[1] Семейство бобовые включает в себя бобовые культуры, такие как фасоль и горох.

В клубеньках бобовых, свободный атмосферный азот превращается в аммиак, который затем превращается в аминокислоты (мономеры белков), нуклеотиды (мономеры ДНК и РНК, а также важнейшая молекула обогащённая энергией - АТФ) и другие вещества клетки, такие как, витамины, флавоны, и фитогормоны. Способность фиксировать газообразный азот делает представителей семейства бобовых идеальной сельскохозяйственной культурой, ввиду снижения необходимости вносить в почву азотные удобрения. На самом деле, высокое содержание азота в почве блокирует развитие клубеньков, так как для растения смысл данного симбиоза теряется. Энергию для осуществления фиксации азота в клубеньках растение получает от сахаров (продуктов фотосинтеза), доставляемых от листьев к корням. Малат, как продукт распада сахарозы, является прямым источником углерода для симбиотических бактерий. Процесс фиксации атмосферного азота очень чувствителен к присутствию кислорода. Клубеньки бобовых несут железосодержащий белок, называемый легоглобин, схожий с миоглобином животных, который используется для облегчения диффузии кислорода, необходимого при дыхании.

Симбиоз

Семейство бобовых

Растения, способствующие фиксации азота, включают в себя семейство бобовых – Fabaceae – с такими таксонами, как пуэрария, клевер, соевые бобы, люце́рна, люпин, арахис и ройбос. В корневых клубеньках они содержат симбиотические бактерии, которых также называют ризобии. Ризобии продуцируют азотные соединения, необходимые для роста и конкуренции с другими растениями. Когда растение погибает, фиксированный азот высвобождается, делая себя доступным для других растений, тем самым происходит обогащение почвы азотом. Подавляющее большинство бобовых имеют такие образования, однако некоторые (например, Styphnolobium) их не имеют. Во многих традиционных методах ведения сельского хозяйства поля засеваются разными видами растений, и эта смена видов носит цикличный характер. В качестве примера таких растений можно привести клевер и гречиху (не относятся к бобовым, семейство Polygonaceae). Их также принято называть «зелёным навозом».

Ещё одним сельскохозяйственным методом выращивания агрокультурных растений, является их высаживание между рядами деревьев инга. Инга – это небольшое тропическое жестколистное дерево, способное к образованию корневых клубеньков и, соответственно, фиксации азота.

Растения, не относящиеся к семейству бобовых

Поперечный срез корневого клубенька ольхи.

Несмотря на то, что на сегодняшний день большинство растений, способных к образованию азотфиксирующих корневых клубеньков, относятся к семейству бобовых, существует несколько исключений:

  • Parasponia – тропический род семейства коноплёвых, способный к взаимодействию с ризобиями и образованию азотфиксирующих клубеньков;
  • Актиноризальные растения, такие как ольха и восковница, также могут образовывать азотфиксирующие клубеньки благодаря симбиотическим отношениям с бактериями Frankia. Эти растения принадлежат к 25 родам, относящимся к 8 семействам.

Способность фиксировать азот распространена в этих семействах не повсеместно. Например, из 122 родов в семействе Розовые, только 4 способны фиксировать азот. Все семейства принадлежат к порядкам Тыквоцветные, Букоцветные и Розоцветные, которые вместе с Бобовоцветными образуют подкласс Розиды. В этом таксоне Бобоцветные были первыми, кто от него ответвились. Таким образом, способность к фиксации азота может быть плезиоморфна и впоследствии могла быть утеряна у большинства потомков исходного азотфиксирующего растения. Однако, возможно, что основные генетические и физиологические предпосылки могли присутствовать и у последнего универсального общего предка всех растений, но реализовались лишь у некоторых современных таксонов.

Семейство: Род

Берёзовые: Ольха (alders)

Коноплёвые: Trema

Казуариновые:

Аллоказуарина
Казуарина
Ceuthostoma
Gymnostoma

......

Кориариевые: Кориария

Датисковые:

Датиска

Лоховые:

Лох (растение)
Облепиха (sea-buckthorns)
Шефердия (buffaloberries)

......

Восковницевые:

Комптония (sweetfern)
Morella
Myrica (bayberries)

......

Rhamnaceae:

Ceanothus
Colletia
Discaria
Kentrothamnus
Retanilla
Talguenea
Trevoa

......

Rosaceae:

Cercocarpus (mountain mahoganies)
Chamaebatia (mountain miseries)
Dryas
Purshia/Cowania (bitterbrushes/cliffroses)

Классификация

Недетерминированные корневые клубеньки, растущие на корнях Люцерны итальянской

На данный момент выделяют два основных типа корневых клубеньков: детерминированные и индетерминированные.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Детерминированные корневые клубеньки встречаются у определенных таксонов тропических бобовых, таких как род Glycine (соя), Phaseolus (бобы) и Vigna, а также у некоторых Lotus. Такие корневые клубеньки утрачивают меристематическую активность вскоре после образования, поэтому рост обусловлен лишь увеличением размеров клеток. Это приводит к образованию зрелых клубеньков шаровидной формы. Другие типы детерминированных корневых клубеньков встречаются у многих трав, кустарников и деревьев (например, у арахиса). Они всегда ассоциированы с пазухами боковых или придаточных корней и образуются в результате заражения через повреждения (например, через трещины), в которых образуются эти корни. Корневые волоски при этом в процессе не задействованы. Их внутренняя структура отлична от таковой у соевых бобов.Ошибка в сносках?: Неправильный вызов: ключ не был указан

Недетерминированные корневые клубеньки встречаются в большинстве бобовых всех трёх подсемейств как в тропиках, так и в умеренных широтах. Их можно обнаружить у папилиоиноидных бобовых, таких как Pisum (горох), Medicago (люцерна), Trifolium (клевер) и Vicia (вика), а также у всех мимозоидных бобовых, таких как акация, и у цезальпиниоидов. Эти клубеньки получили название «недетерминированных» из-за того, что они их апикальная меристема активна, что приводит к росту клубенька на протяжении всей его жизни. В результате чего формируется клубенёк, имеющий цилиндрическую, иногда разветвлённую форму. Из-за того что они активно растут, можно выделить зоны, которые разграничивают различные стадии развития и симбиоза:[2][3][4]

Диаграмма, иллюстрирующая различные зоны недетерминированного корневого клубенька (см. текст).
 Зона I – активная меристема. Здесь формируются новые ткани клубенька, которые затем дифференцируются в другие зоны.
Зона II – зона инфицирования. Эта зона пронизана инфекционными нитями, состоящими из бактерий. Растительные клетки здесь крупнее, чем в предыдущей зоне, деление клеток останавливается.
Интерзона II–III – вход бактерий в растительные клетки, содержащие амилопласты. Клетки удлиняются и начинают окончательно дифференцироваться в симбиотические, несущие азотфиксирующие бактерии. 
Зона III – зона фиксации азота. В каждой клетке этой зоны присутствует большая центральная вакуоль и цитоплазма заполнена симбиотическими бактериями фиксирующими азот. Растение наполняет эти клетки легемоглобином, что придаёт им розовый оттенок;
Зона IV – зона старения. Здесь происходит деградация клеток и их эндосимбионтов. Разрушение гема легемоглобина приводит к появлению зелёного оттенка. Это наиболее изученный тип корневых клубеньков, однако детали различны в клубеньках арахиса и родственных ему растений, а также в клубеньках агрокультурных растений, таких, как люпин. Его клубеньки образуются благодаря прямому заражению ризобиями эпидермы, где инфекционные нити не образуются. Клубеньки растут вокруг корня, образуя структуру на подобие кольца. В этих клубеньках, равно как и клубеньках арахиса, центральная инфицированная ткань однородна. У соевых бобов, гороха и клевера наблюдается недостаток неинфицированных клеток в клубеньках.

Формирование корневого клубенька

Азотфиксирующие клубеньки на корне клевера.

Корни бобовых секретируют вещества флавониды, которые индуцируют выработку nod-факторов у бактерий. Когда этот фактор распознается корнем, происходит целый ряд морфологических и биохимических изменений: инициируются клеточные деления в корне для создания клубенька, а траектория роста корневого волоска изменяется так, что он обволакивает бактерию вплоть до её полной инкапсуляции. Инкапсулированные бактерии несколько раз делятся, образуя микроколонию. Из этой колонии клетки бактерий входят в развивающийся клубенёк с помощью структуры, называемой инфекционной нитью. Она растёт через корневой волосок вплоть до базальной части клетки эпидермиса, а далее к центру корня. Затем клетки бактерий окружаются мембраной клеток корня растения и дифференцируются в бактериоды, способные фиксировать азот.

Нормальное клубнеобразование занимает приблизительно четыре недели после посадки растения. Размер и форма клубеньков зависит от вида растения, которое было посажено. Так, соя или арахис будут иметь более крупные клубеньки, чем у кормовых бобовых (красный клевер, люцерна). При визуальном анализе количества клубеньков, а также их цвета, учёные могут определить эффективность фиксации азота растением.

Образование клубеньков контролируется как внешними процессами (тепло, рН почвы, засуха, уровень нитратов), так и внутренними (авторегуляция клубнеобразования, этилен). Авторегуляция клубнеобразования контролирует число клубеньков в растении посредством процессов, в которых принимают участие листья. Ткань листа ощущает ранние стадии клубнеобразования через неизвестный химический сигнал, а затем ограничивает дальнейшее развитие клубенька в развивающейся ткани корня. В авторегуляции клубнеобразования участвуют лейцин-богатые повторы (LRR) рецепторных киназ (NARK у соевых бобов (Glycine max); HAR1 у Lotus japonicas, SUNN у Medicago truncatula). Мутации, ведущие к потере функции этих рецепторных киназ ведут к повышенному уровню клубнеобразования. Зачастую аномалии роста корней сопровождаются потерей активности обсуждаемых рецепторных киназ, что указывает на функциональную связь роста клубеньков и корней. Исследование механизмов образований клубеньков показали, что ген ENOD40, кодирующий белок из 12-13 аминокислот, активируется во время клубнеобразования.

Связь со структурой корня

По-видимому, корневые клубеньки у представителей семейства Бобовые образовывались в процессе эволюции минимум три раза и редко встречаются вне этого таксона. Склонность этих растений к развитию корневых клубеньков, скорее всего, связана со структурой корня. В частности, тенденция к развитию боковых корней в ответ на абсцизовую кислоту может способствовать более поздней эволюции корневых клубеньков.

Корневые клубеньки у других видов растений

Разрезанный корневой клубенёк ольхи.
Целый корневой клубенёк ольхи.

Корневые клубеньки, которые встречаются у представителей других семейств, таких как параспония - симбиоз с бактериями рода Rhizobium, и те, которые возникают в результате симбиотических взаимодействий с Actinobacteria Frankia, например, у ольхи, значительно отличаются от форм клубеньков, образующихся у бобовых. В симбиозах такого типа бактерии никогда не выходят из инфекционных нитей. Actinobacteria Frankia образует симбиотические отношения со следующими таксонами (семейство указано в скобках): Тыквоцветные (Кориария и Датиска), Букоцветные (Берёзовые, Казуариновые и Восковницевые), Розоцветные (Крушиновые, Лоховые и Розовые). Актиноризальные симбиозы и ризобиальные симбиозы сходны по эффективности фиксации азота. Все эти порядки, включая Fabales, формируют единый азотфиксирующий таксон с более широким таксоном Розиды.

Некоторые грибы формируют клубнеобразные структуры, известные как бугорчатые микоризы, на корнях растений-хозяев. Например, Suillus tomentosus образует такие структуры с сосновой лиственницей (Pinus contorta var. Latifolia). Было показано, что в этих структурах содержатся бактерии, которые способны фиксировать азот. Они фиксируют большой объём азота и позволяют соснам заселять новые территории с бедными почвами.

Смотрите также

Корневая (галловая) нематода

Ссылки

  1. Doyle, J. J.; Luckow, M. A. (2003). "The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context". Plant Physiology. 131 (3): 900—910. doi:10.1104/pp.102.018150. PMC 1540290. PMID 12644643. {{cite journal}}: Неизвестный параметр |last-author-amp= игнорируется (|name-list-style= предлагается) (справка)
  2. Fabrice Foucher; Eva Kondorosi (2000). "Cell cycle regulation in the course of nodule organogenesis in Medicago" (PDF). Plant Molecular Biology. 43 (5—6): 773—786. doi:10.1023/A:1006405029600. PMID 11089876. {{cite journal}}: Неизвестный параметр |last-author-amp= игнорируется (|name-list-style= предлагается) (справка)
  3. Hannah Monahan-Giovanelli; Catalina Arango Pinedo; Daniel J. Gage (2006). "Architecture of Infection Thread Networks in Developing Root Nodules Induced by the Symbiotic Bacterium Sinorhizobium meliloti on Medicago truncatula". Plant Physiology. 140 (2): 661—670. doi:10.1104/pp.105.072876. PMC 1361332. PMID 16384905. {{cite journal}}: Неизвестный параметр |last-author-amp= игнорируется (|name-list-style= предлагается) (справка)
  4. Willem Van de Velde; Juan Carlos Pérez Guerra; Annick De Keyser; Riet De Rycke; et al. (2006). "Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula". Plant Physiology Review. 141 (2): 711—20. doi:10.1104/pp.106.078691. PMC 1475454. PMID 16648219. {{cite journal}}: Неизвестный параметр |last-author-amp= игнорируется (|name-list-style= предлагается) (справка)
Ошибка в сносках?: Тег <ref> с именем «paul07», определённый в <references>, не используется в предшествующем тексте.

Внешние ссылки