Термография

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Изображение небольшой собаки, сделанное в средних инфракрасных лучах
Тепловое изображение двух страусов
Тепловое изображение змеи на руке человека
Тепловое изображение льва
Тепловое изображение обычного здания на заднем плане и 'пассивного дома' на переднем плане
Термограмма, показывающая распределение тепловых полей у человека

Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 0,9-14 мкм) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Интенсивность теплового излучения тела увеличивается с повышением его температуры, поэтому термография позволяет видеть распределение температуры по поверхности тела. Когда смотрим через тепловизор, то более тёплые объекты видны лучше на фоне окружающей среды; люди и теплокровные животные лучше заметны в окружающей среде, как днём, так и ночью. Благодаря этому термография может найти применение военными и службами безопасности.

Создание термограмм на основе тепловых изображений нашло много применений. Например, пожарные используют их для обнаружения в условиях задымлениялюдей и установления очагов возгорания. С помощью тепловых изображений в технике, обслуживающей линии электропередач обнаруживают перегрев в местах соединений и части, находящиеся в аварийном состоянии, требующие устранения потенциальной опасности. Когда нарушена теплоизоляция, строители могут видеть утечку тепла и предотвратить неисправности при охлаждении или обогреве системами кондиционирования воздуха. Тепловизоры, делающие снимки, также устанавливаются в некоторых автомобилях класса «люкс» для помощи водителю, например, в некоторых моделях «Кадиллак» с 2000 года. Некоторая физиологическая деятельность организма, требующая более пристального внимания у людей и теплокровных животных, также может быть наблюдаема при помощи тепловых изображений.[1]

Внешний вид и работа современных тепловизионных систем часто похожи на работу телевизионной системы. Возможность видеть в инфракрасном диапазоне — настолько полезная функция, что запись таких изображений часто является второстепенной функцией. Поэтому модуль для записи не всегда предусматривается.

Вместо ПЗС датчиков большинство тепловизоров используют КМОП-матрицу. Наиболее часто используются матрицы из антимонида индия InSb, арсенида галлия GaAs, индия In, теллурид ртути HgTe и кадмия Cd. Новейшие технологии позволяют использовать недорогие неохлаждаемые микроболометрические датчики. Их разрешение более низкое, чем у оптических камер, — в основном 160×120 или 320×240 пикселей до 1024×768 у наиболее современных моделей. Тепловизоры и ИК приемники высокого класса имеют более важное значение в производстве военной техники, чем их аналоги для видимой части спектра и на них часто накладываются экспортные ограничения. Старые болометры и более чувствительные модели, такие, как с использованием антимонида индия, требуют криогенного охлаждения (обычно охладитель с циклом Стирлинга в миниатюре или охлаждение жидким азотом).

Отличие инфракрасной съёмки от термографии[править | править вики-текст]

Инфракрасная съёмка излучения соответствует температуре между 250 °C и 500 °C, в то время как диапазон термографии примерно от −50 °C до более, чем 2000 °C. Так, для инфракрасной съёмки для показа чего-либо температура объекта должна быть свыше 250 °C или объект должен отражать инфракрасное излучение, исходящее от чего-то горячего. Следует отметить, что наиболее распространённые приборы ночного видения (пассивного типа) обычно только усиливают небольшое количество света, которое создаётся, например, звёздным светом или луной, и через них невозможно увидеть тепло или работать в полной темноте.

Пассивная и активная термография[править | править вики-текст]

Все объекты с температурой выше абсолютного нуля испускают инфракрасное излучение. Следовательно, отличный способ для измерения тепловых изменений состоит в том, чтобы использовать устройство инфракрасного видения, обычно блок фокусных плоскостей тепловизора позволяет обнаруживать излучение в средних (от 3 до 5 μм) и длинных (от 8 до 15 μм) волнах инфракрасной полосы частот, обозначаемых как MWIR и LWIR и соответствующим двум инфракрасным окнам с высоким коэффициентом пропускания. Неправильно выбранный диапазон температур, исследуемый на поверхности объекта, указывает на потенциальную проблему.[2]

В пассивной термографии особый интерес представляет повышение или понижение природного температурного уровня по сравнению с температурой окружения. У пассивной термографии много применений, таких, как наблюдение людей на сцене или в медицине. В активной термографии иначе — там источник энергии должен создавать температурный контраст между интересующим объектом и фоном. Активный подход необходим во многих случаях, когда исследуемые части находятся в температурном равновесии с окружающей средой. Современные тепловизоры позволяют с помощью специального программного обеспечения определять температуру в каждой точке термограммы.

Преимущества термографии[править | править вики-текст]

  • Может показывать визуальное изображение, что помогает в сравнении температур на большой площади
  • Даёт возможность захвата движущихся целей в реальном времени
  • Позволяет находить аварийные элементы до их выхода из строя
  • Измерение в областях, где другие методы невозможны или опасны
  • Неразрушающий контроль
  • Облегчает поиск дефектов в колоннах или других металлических частях

Ограничение и недостатки термографии[править | править вики-текст]

  • Качественные камеры дороги и их легко повредить
  • Большинство камер имеют погрешность ±2 % или меньшую точность
  • Обучение и содержание в штате специалиста по инфракрасному сканированию требует затрат времени и средств
  • Возможность измерения только температуры поверхностей

Применение[править | править вики-текст]

Тепловые инфракрасные камеры преобразуют энергию инфракрасных волн в видимый свет на видеоэкране. Все объекты с температурой выше 0 кельвинов излучают тепловую инфракрасную энергию, поэтому инфракрасные камеры могут пассивно видеть все объекты независимо от наличия окружающего освещения. Тем не менее, большинство тепловых камер видят только объекты, теплее −50 °C.

Спектр и уровень теплового излучения сильно зависит от температуры поверхности объекта. Это даёт возможность тепловой камере видеть температуру объектов. Тем не менее, другие факторы также влияют на излучение, регистрация которого ограничивается точностью техники. Например, излучение зависит не только от температуры объекта, но также и от отражающей способности объекта. Так, излучение, первоначально испускаемое окружающей средой, отражается объектом и к нему присоединяется излучение самого объекта, а регистрироваться приборами будет только общая величина.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

История производителей тепловизоров[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Тепловые изображения на тёмном шоссе  (англ.)
  2. Maldague X. P. V., Jones T. S., Kaplan H., Marinetti S. and Prystay M. "Chapter 2: Fundamentals of Infrared and Thermal Testing: Part 1. Principles of Infrared and Thermal Testing, " in Nondestructive Handbook, Infrared and Thermal Testing, Volume 3, X. Maldague technical ed., P. O. Moore ed., 3rd edition, Columbus, Ohio, ASNT Press, 2001, 718 p.