Гипотеза Рамануджана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Гипотеза Рамануджана — высказанное С. Рамануджаном предположение относительно величины коэффициентов Фурье функции (параболическая формы веса 12). Функция есть собственная функция операторов Гекке,  — соответствующие собственные значения.

Рамануджан предположил, что они удовлетворяют неравенству:

где  — простое.

При этом функцию называют также функцией Рамануджана.

Петерсон (Н. Petersson) обобщил гипотезу Рамануджана на случай собственных значений операторов Гекке модулярных форм веса , где целое . Это так называемая гипотеза Петерсона.

Позднее Пьер Делинь свёл гипотезу Петерсона к гипотезе Вейля, которую впоследствии сам же доказал в 1974 году. Соответственно, этим была доказана и гипотеза, выдвинутая Рамануджаном.

Литература[править | править вики-текст]

  1. Ramanujan S. Transactions of the Cambridge Philosophical Society, 1916. — v. 22.
  2. Делинь П. Успехи математических наук. — 1975. — т. 30. — в. 5. — с. 159—190.
  3. Фоменко, О. М. Итоги науки и техники. Алгебра. Топология. Геометрия. — М.: ВИНИТИ, 1977. — Т. 15. — С. 5—91.