Обсуждение:Множество Мандельброта
![]() | Статья «Множество Мандельброта» входит в общий для всех языковых разделов Википедии расширенный список необходимых статей. Её развитие вплоть до статуса избранной является важным направлением работы русского раздела Википедии. Вы можете посетить страницу проекта «Мириада», который занимается улучшением наиболее важных статей Википедии, и, при желании, присоединиться к нему. |
Проект «Математика» (уровень III, важность средняя) Эта статья тематически связана с вики-проектом «Математика», цель которого — создание и улучшение статей по темам, связанным с математикой. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. Уровень статьи по шкале оценок проекта: в развитии
Важность статьи для проекта «Математика»: средняя |
Программа на C.[править код]
Убрал, т.к.:
- Это менее важно, но она подписана -- а здесь это неправильно.
- Более важно -- сильно загромождает место, ухудшает восприятие статьи.
Если она есть где-нибудь на внешнем ресурсе -- думаю, можно ставить ссылку в "см. также"... Burivykh 18:39, 7 июня 2009 (UTC)
Думаю надо убрать программу на PHP. Этим языком только людей пугать. Уж лучше на haskell выложите. 94.181.126.6 16:54, 24 июля 2009 (UTC)
- Поддерживаю. Програмному коду на php и других "промышленных" языках здесь в статье не место, он только замусоривает статью. Предлагаю заменить псевдокодом с англовики. -- X7q 13:36, 21 сентября 2009 (UTC)
Ага, на Си напишите, будет забавно глянуть какой код у вас получится. Прикладное и системное программирование вещи разные. Я нигде не видел более компактной программы для отрисовки множества Мандельброта, чем моя, впрочем если можете, напишите более компакнтую.
- Подписывайте сообщения (четыре тильды). Если не видел, это еще не значит что нельзя сделать проще. Например, есть такой простенький графический формат - PPM, в него безо всяких библиотек на любом языке можно писать вывод.
А значит щас я возьму перл и как...Впрочем, не думаю что любая такая "самая компактная" программа заслуживает чести быть включенной в статью. Алгоритмы следует приводить в статьях в виде псевдокода, чтобы любой желающий мог его понять и перевести на свой язык. -- X7q 13:36, 21 сентября 2009 (UTC)- Безусловно, любой код такого размера сильно портит статью, если не свёрнут. Если бы эти коды отображались в свёрнутом виде, и лишь по желанию их можно было бы развернуть, тогда ещё ничего. А так это просто замусоривание статьи (99% читателей код вообще не нужен). — Shogiru 18:37, 4 февраля 2013 (UTC)
К вопросу о простоте[править код]
Раз уж речь зашла о простой и общедоступной форме алгоритма, тогда нужна Блок-схема а не псевдокоды. PHP как раз и был выбран из-за его простоты, проще наверное только Бейсик, да и то не факт, больинство школьников, изучавших Бейсик в общем курсе Информатики, без проблем разберутся с представленной здесь программой на PHP. "Любой желающий", знающий какие-то там псевдокоды, это конечно лихо. Вот я к примеру хоть и программист, но не имею ни малейшего понятиях, о каких псевдокодах идет речь. 81.1.243.193 07:09, 26 января 2010 (UTC)
Моежет подправить?[править код]
Для точек, лежащих внутри множества, последовательность не будет иметь тенденции к бесконечности и никогда не достигнет этого числа,
непонтно какого именно числа оно не достигнет 92.243.178.19 22:41, 19 июня 2010 (UTC)
отличное видео иллюстрирующее красоту множества[править код]
не знаю как добавить его сюда, поэтому предлагаю это сделать авторам статьи
85.64.17.215 13:43, 12 февраля 2010 (UTC) Влад
Сделано Хоть я и не автор статьи, но видео столь красивое, что добавил в список ссылок. — Shogiru 18:26, 4 февраля 2013 (UTC)
Не слишком ли тяжеловесно?[править код]
Основываясь на своих расчётах, он доказал, что орбита точки, лежащей на расстоянии больше 2 от начала координат, всегда уходит в бесконечность.
Это очевидно и доказывается на школьном уровне за минуту; доказательство есть и в следующем разделе статьи. Наверняка это было очевидно и для Фату. Может, убрать? — Shogiru 18:12, 4 февраля 2013 (UTC)
Отсутствие упоминания наиболее базисных свойств.[править код]
Ничего не сказано ни о замкнутости (что в условиях ограниченности равносильно компактности, о чём тоже неплохо бы упомянуть), ни даже о квадрируемости, несмотря на то, что сразу же в преамбуле (не рановато ли?) говорится о площади, как якобы о само разумеющемся понятии.
Неправильное определение множества Мандельброта.[править код]
Множество М. - это множество значений с, для которых множество Жюлиа является связным. и=79.143.72.53 15:58, 23 октября 2016 (UTC)
- Так тоже можно сказать и про это в статье написано: Множество Мандельброта#Связь с множеством Жюлиа. — Алексей Копылов 05:49, 24 октября 2016 (UTC)
c=i не входит в множество[править код]
Здравствуйте.
Сегодня обнаружил, что на чертеже c=i не входит в множество Мандельброта! хотя
z0=0, z1=0^2+i=i, z2=i^2+i=-1+i, z3=(-1+i)^2+i=+1-2i-1+i=-i, z4=(-i)^2+i=-1+i=z2- круг замкнулся. Что не так?
176.209.129.155 13:22, 5 августа 2020 (UTC) Альберт 176.209.129.155 13:22, 5 августа 2020 (UTC)
Оптимизация. Функция atn₂[править код]
В разделе "Оптимизация" (https://ru.wikipedia.org/wiki/Множество_Мандельброта#Оптимизация) указана функция atn₂, упоминаний которой нигде нет. Не стоит ли объяснить, что это?
Sasha gershtein (обс.) 17:09, 3 декабря 2021 (UTC)