Оконное преобразование Фурье

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Оконное преобразование Фурье — это разновидность преобразования Фурье, определяемая следующим образом:

где  — некоторая оконная функция. В случае дискретного преобразования оконная функция используется аналогично:

Существует множество математических формул визуально улучшающих частотный спектр на разрыве границ окна. Для этого применяются преобразования: треугольное (Барлетта), синус-окно, синус в кубе, синус в 4-й степени, преобразование Парзена, Уэлча, Гаусса, Хеннинга, приподнятый косинус (Хэмминга), Чебышева, с пульсациями, Розенфилда, Блэкмана-Харриса, горизонтальное и с плоской вершиной. Также существует методика по взаимному перекрытию окон, при этом обычно можно выбрать сколько семплов из предыдущего окна будет усреднено с текущим окном.

Применение[править | править код]

На практике нет возможности получить сигнал на бесконечном интервале, так как нет возможности узнать, какой был сигнал до включения устройства и какой он будет в будущем. Ограничение интервала анализа равносильно произведению исходного сигнала на прямоугольную оконную функцию. Таким образом, результатом оконного преобразования Фурье является не спектр исходного сигнала, а спектр произведения сигнала и оконной функции. В результате возникает эффект, называемый растеканием спектра сигнала. Опасность заключается в том, что боковые лепестки[уточнить] сигнала более высокой амплитуды могут маскировать присутствие других сигналов меньшей амплитуды.

Для борьбы с растеканием спектра применяют более гладкую оконную функцию, спектр которой имеет более широкий главный лепесток и низкий уровень боковых лепестков. Спектр, полученный при помощи оконного преобразования Фурье, является сверткой спектра исходного идеального сигнала и спектра оконной функции.

Искажения, вносимые применением окон, определяются размером окна и его формой. Выделяют следующие основные свойства оконных функций: ширина главного лепестка по уровню -3 дБ, ширина главного лепестка по нулевому уровню, максимальный уровень боковых лепестков, коэффициент ослабления оконной функции.

Частотно-временное разрешение[править | править код]

При использовании оконного преобразования Фурье невозможно одновременно обеспечить хорошее разрешение по времени и по частоте. Чем уже окно, тем выше разрешение по времени и ниже разрешение по частоте.

Сравнение оконного преобразования Фурье с разными окнами. Слева (узкое окно) - хорошее разрешение по времени, справа (более широкое окно) - хорошее разрешение по частоте.

Разрешение по осям является постоянным. Это нежелательно для ряда задач, в которых информация по частотам распределена неравномерно. В таких задачах в качестве альтернативы оконному преобразованию Фурье может использоваться вейвлет-преобразование, временное разрешение которого увеличивается с частотой (частотное снижается).

Типы оконных функций[править | править код]

Прямоугольное окно[править | править код]

Прямоугольное окно; B=1.00

Получается автоматически при ограничении выборки N отсчетами. Максимальный уровень боковых лепестков частотной характеристики: -13 дБ.

Окно Ханна (Хеннинга)[править | править код]

Окно Ханна; B = 1.50

где N — ширина окна. Уровень боковых лепестков: -31.5 дБ.

Окно Хэмминга[править | править код]

Окно Хэмминга

Уровень боковых лепестков: -42 дБ.

Окно Блэкмана[править | править код]

Окно Блэкмана; α = 0.16; B=1.73

Уровень боковых лепестков: -58 дБ (α=0.16).

Окно Кайзера[править | править код]

Окно Кайзера, α =2; B=1.5
Окно Кайзера, α =3; B=1.8

где  — модифицированная функция Бесселя первого рода нулевого порядка;  — коэффициент определяющий долю энергии, сосредоточенной в главном лепестке спектра оконной функции. Чем больше тем больше доля энергии, и шире главный лепесток, и меньше уровень боковых лепестков. На практике используются значения от 4 до 9.

См. также[править | править код]

Внешние ссылки[править | править код]