Примитивный многочлен (алгебра)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

В алгебре примитивный многочлен — это всякий многочлен , где — ассоциативно-коммутативное кольцо, с однозначным разложением на множители, коэффициенты которого не имеют нетривиальных общих делителей.

Любой многочлен можно записать в виде , где — примитивный многочлен, a наибольший общий делитель коэффициентов многочлена . Элемент , определён с точностью до умножения на обратимые элементы из R, он называется содержанием многочлена .

Лемма Гаусса[править | править код]

Если , то . В частности, произведение примитивных многочленов снова примитивно.

Доказательство[править | править код]

Сначала докажем, что произведение примитивных многочленов есть примитивный многочлен. Для этого достаточно проверить, что если простой элемент кольца делит все коэффициенты многочлена , то он является общим делителем всех коэффициентов многочлена или общим делителем всех коэффициентов многочлена . Пусть , ,  — степени этих многочленов. Проведем индукцию по . Если , то и , . Если делит , то так как кольцо факториально, делит или делит , то есть в этом случае утверждение верно. В общем случае . Предположим, что некоторый простой элемент кольца делит все коэффициенты многочлена . Так как и кольцо факториально, то или . Пусть для определенности . Если , то делит все коэффициенты многочлена . Если же , то заметим, что будет и общим делителем всех коэффициентов многочлена , где . Действительно, все коэффициенты многочлена делятся на , а значит, и на . По предположению индукции делит все коэффициенты многочлена или все коэффициенты многочлена . В первом случае делит также и все коэффициенты многочлена . По принципу математической индукции утверждение доказано для всех значений и

Докажем, что . Пусть , , где ,  — примитивные многочлены. Тогда . Так как многочлен по доказанному примитивен, то . Лемма доказана.

Литература[править | править код]

  • Зарисский О., Самюэль П., Коммутативная алгебра, пер. с англ., т. 1, М.