Кратность критической точки: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Строка 1: Строка 1:
{{Значения|Кратность}}
{{Значения|Кратность}}
'''Кратность''' [[Критическая точка (математика)|критической точки]] гладкого отображения <math>f: \R^n\to\R</math> — [[размерность]] так называемой '''локальной алгебры градиентного отображения'''.
'''Кратность''' [[Критическая точка (математика)|критической точки]] <math>C^{\infty}</math>-гладкой функции <math>f: \R^n\to\R</math> — [[размерность]] так называемой '''локальной алгебры градиентного отображения'''.


{{рамка}}
{{рамка}}
Пусть <math>f: \R^n\to\R</math> — гладкая функция от <math>n</math> переменных <math>x_1, \ldots, x_n</math>, имеющая <math>O\in\R^n</math> своей критической точкой. Соответствующее '''градиентное отображение''' <math>\nabla f: \R^n\to\R^n</math> задается формулой <math>(x_1, \ldots, x_n) \mapsto (\partial f/\partial x_1, \ldots, \partial f/\partial x_n).</math> Введем следующие обозначения:
Пусть <math>f: \R^n\to\R</math> — гладкая функция от <math>n</math> переменных <math>x_1, \ldots, x_n</math>, имеющая <math>O\in\R^n</math> своей критической точкой. Соответствующее '''градиентное отображение''' <math>\nabla f: \R^n\to\R^n</math> задается формулой <math>(x_1, \ldots, x_n) \mapsto (\partial f/\partial x_1, \ldots, \partial f/\partial x_n).</math> Введем следующие обозначения:
* <math>\R[[x_1, \ldots, x_n]]</math> — [[Алгебра над кольцом|алгебра]] [[Степенной ряд|формальных степенных рядов]] от переменных <math>x_1, \ldots, x_n</math> с центром в <math>O.</math>
* <math>\R[[x_1, \ldots, x_n]]</math> — [[Алгебра над кольцом|алгебра]] [[Степенной ряд|формальных степенных рядов]] от переменных <math>x_1, \ldots, x_n</math> с центром в <math>O.</math>
* <math>I_{\nabla f} = (\partial f/\partial x_1, \ldots, \partial f/\partial x_n)</math> — [[Идеал (алгебра)|идеал]] в алгебре гладких функций, порожденный образующими <math>\partial f/\partial x_1, \ldots, \partial f/\partial x_n.</math>
* <math>I_{\nabla f} = (\partial f/\partial x_1, \ldots, \partial f/\partial x_n)</math> — [[Идеал (алгебра)|идеал]] в алгебре гладких функций, порожденный образующими <math>\partial f/\partial x_1, \ldots, \partial f/\partial x_n.</math>


'''Локальной алгеброй''' градиентного отображения в точке <math>O</math> называется [[факторалгебра|факторалгебра]] <math>\R[[x_1, \ldots, x_n]]/I_{\nabla f},</math>
Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение <math>I_{\nabla f}</math> в алгебру <math>\R[[x_1, \ldots, x_n]]</math>. '''Локальной алгеброй''' градиентного отображения в точке <math>O</math> называется [[факторалгебра|факторалгебра]] <math>\R[[x_1, \ldots, x_n]]/I_{\nabla f},</math> а её размерность <math>\mu = \dim \, \R[[x_1, \ldots, x_n]]/I_{\nabla f}</math> называется '''кратностью''' функции <math>f</math> в точке <math>O.</math>
а её размерность <math>\mu = \dim \, \R[[x_1, \ldots, x_n]]/I_{\nabla f}</math> называется '''кратностью''' отображения <math>f</math> в точке <math>O.</math>
{{/рамка}}
{{/рамка}}


Строка 47: Строка 46:
Впервые эта теорема была доказа [[Вейерштрасс|Вейерштрассом]] для [[Голоморфная функция|голоморфных функциий]] комплексных переменных<ref>''Weierstrass K.'' Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. — Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188.</ref>
Впервые эта теорема была доказа [[Вейерштрасс|Вейерштрассом]] для [[Голоморфная функция|голоморфных функциий]] комплексных переменных<ref>''Weierstrass K.'' Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. — Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188.</ref>
(теорема деления ''по Вейерштрассу''). Приведённый выше вещественный аналог часто называют теоремой деления ''по Мальгранжу'' или ''по Мазеру''.
(теорема деления ''по Вейерштрассу''). Приведённый выше вещественный аналог часто называют теоремой деления ''по Мальгранжу'' или ''по Мазеру''.

== Критические точки отображений ==

'''Кратность''' [[Критическая точка (математика)|критической точки]] <math>C^{\infty}</math>-гладкого отображения <math>f: \R^n\to\R^n</math>, где <math>n>1</math>, — это [[размерность]] '''локальной алгебры''' данного отображения.

{{рамка}}
Пусть <math>f: \R^n\to\R^n</math> — гладкое отображение, имеющее <math>O\in\R^n</math> своей критической точкой. Отображение <math>\,f</math> задается набором <math>n</math> гладких функций
<math>f_1, \ldots, f_n</math> от <math>n</math> переменных <math>x_1, \ldots, x_n</math>.

Введем следующие обозначения:
* <math>\R[[x_1, \ldots, x_n]]</math> — [[Алгебра над кольцом|алгебра]] [[Степенной ряд|формальных степенных рядов]] от переменных <math>x_1, \ldots, x_n</math> с центром в <math>O.</math>
* <math>I_{f} = (f_1, \ldots, f_n)</math> — [[Идеал (алгебра)|идеал]] в алгебре гладких функций, порожденный образующими <math>f_1, \ldots, f_n.</math>

Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение <math>\,I_{f}</math> в алгебру <math>\R[[x_1, \ldots, x_n]]</math>. '''Локальной алгеброй''' отображения в точке <math>O</math> называется [[факторалгебра|факторалгебра]] <math>\R[[x_1, \ldots, x_n]]/I_{f},</math> а её размерность <math>\mu = \dim \, \R[[x_1, \ldots, x_n]]/I_{f}</math> называется '''кратностью''' отображения <math>f</math> в точке <math>O.</math>
{{/рамка}}







== См. также ==
== См. также ==

Версия от 11:21, 10 февраля 2011

Кратность критической точки -гладкой функции размерность так называемой локальной алгебры градиентного отображения.

Пусть — гладкая функция от переменных , имеющая своей критической точкой. Соответствующее градиентное отображение задается формулой Введем следующие обозначения:

  • алгебра формальных степенных рядов от переменных с центром в
  • идеал в алгебре гладких функций, порожденный образующими

Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй градиентного отображения в точке называется факторалгебра а её размерность называется кратностью функции в точке Шаблон:/рамка

В случае, когда функции имеют в точке линейно независимые градиенты (это условие равносильно тому, что гессиан функции отличен от нуля), кратность , и критическая точка называется невырожденной. Удобно также положить в случае некритической точки.

Случай

В этом случае кратность критической точки может быть определена следующим условием:

Значение соответствует некритической точке.

Действительно, так как в этом случае степенной ряд функции начинается с члена то любой элемент представим в виде , где и — многочлен степени задаваемый коэффициентами, т.е.

Теорема Тужрона в этом случае принимает тривиальный вид: в окрестности критической точки конечной кратности существуют координаты, в которых функция имеет вид

Теорема деления

Пусть — гладкая функция от переменной , имеющая точку своей критической точкой кратности по переменной , т.е.

Тогда в окрестности точки функция представима в виде

где и — гладкие функции своих аргументов, не обращается в нуль и для всех . Шаблон:/рамка

Впервые эта теорема была доказа Вейерштрассом для голоморфных функциий комплексных переменных[1] (теорема деления по Вейерштрассу). Приведённый выше вещественный аналог часто называют теоремой деления по Мальгранжу или по Мазеру.

Критические точки отображений

Кратность критической точки -гладкого отображения , где , — это размерность локальной алгебры данного отображения.

Пусть — гладкое отображение, имеющее своей критической точкой. Отображение задается набором гладких функций от переменных .

Введем следующие обозначения:

  • алгебра формальных степенных рядов от переменных с центром в
  • идеал в алгебре гладких функций, порожденный образующими

Сопоставляя каждой гладкой функции её формальный ряд Тейлора, мы получаем вложение в алгебру . Локальной алгеброй отображения в точке называется факторалгебра а её размерность называется кратностью отображения в точке Шаблон:/рамка




См. также

Литература

  • Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений, — Любое издание.
  • Брёкер Т., Ландер Л. Дифференцируемые ростки и катастрофы, — Любое издание.
  • Голубицкий М., Гийемин В. Устойчивые отображения и их особенности, — М.: Мир, 1977.
  • Хёрмандер Л. Введение в теорию функций нескольких комплексных переменных, — М.: Мир, 1968.
  • Сборник статей: Особенности дифференцируемых отображений, — М.: Мир, 1968.
  • Паламодов В.П. О кратности голоморфного отображения, — Функц. анализ и его прил., 1:3 (1967), стр. 54–65.
  • Арнольд В. И. Замечание о подготовительной теореме Вейерштрасса, — Функц. анализ и его прил., 1:3 (1967), стр. 1–8.

Примечания

  1. Weierstrass K. Einige auf die Theorie der analytischen Functionen mehrerer Veränderlichen sich beziehende Sätze. — Mathematische Werke, V. II, Mayer und Müller, Berlin, 1895, 135–188.