Электропрогрев бетона

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Электропрогрев бетона применяется при бетонировании конструкций при ожидаемой среднесуточной температуре наружного воздуха ниже 5 °C и минимальной суточной температуре ниже 0 °C согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции». Целью электропрогрева бетона является недопущение замораживания свежеуложенного бетона, которое сопровождается образованием вокруг арматуры и зерен заполнителя ледяных плёнок. Электропрогрев бетона осуществляется двумя основными способами — электродный и греющими петлями ПНСВ.

Электропрогрев бетонного фундамента на стройплощадке

Электродный способ[править | править код]

Электродный прогрев бетона заключается в том, что выделение тепла происходит непосредственно в бетоне при пропускании через него электрического тока (принцип армейского кипятильника). Электропрогрев данным способом осуществляется преимущественно для стен, реже для небольших перекрытий (где нет возможности заложить греющую петлю из-за небольшой площади). Также применяется для предварительного прогрева бетона перед его заливкой в опалубку.[1]

Недостатки: большой ток[2] (требует наличия на строительной площадке большой электрической мощности — от 1000 кВт для 3—5 м³ бетонной смеси), при высыхании бетона прекращается его нагрев, требуется повышение напряжения для поддержания температуры бетона.

Преимущества: быстрый нагрев смеси, надежность и простота монтажа.

Греющие петли[править | править код]

Обогрев греющими петлями (принцип предельного тока на кабеле) осуществляется преимущественно для перекрытий, реже для стен (где требуется существенно понизить энергопотребление на прогрев конструкции). Электропитание греющих элементов (петель и электродов) осуществляется через понижающий трансформатор, имеющий несколько ступеней пониженного напряжения, что позволяет регулировать тепловую мощность, выделяемую нагревательными проводами при изменении температуры наружного воздуха.[1]

Недостатки: возможность повреждении изоляции (5-10 %) при бетонировании, сложность расчёта и монтажа.

Преимущества: поддержка температуры вне зависимости от высыхания бетона, меньшее потребление тока, чем при электродном прогреве на одинаковый объём.

Термоэлектроматы[править | править код]

Термоэлектроматами осуществляется прогрев фундамента, перекрытий и других бетонных конструкций. Термоматы обладают низким энергопотреблением, и для их работы не требуется специальное оборудование (понижающий трансформатор), могут работать от обычной сети в автономном режиме. Внутри каждого термоэлектромата находится инфракрасная плёнка при прохождении через которую электрического тока, начинают испускаться инфракрасные лучи (инфракрасное тепло).

Преимущества[править | править код]

  • Быстрый прогрев бетона (R28 достигается за 12-24 часов);
  • простой монтаж - термоматы укладываются на свежезалитый бетон (между матами и бетоном желательно укладывать полиэтиленовую плёнку), масса каждого термомата не более нескольких килограмм;
  • автономность всего процесса прогрева бетона;
  • срок службы оригинальных термоматов при активной эксплуатации от 1 года.

Недостатки[править | править код]

  • Относительно большая стоимость;
  • На рынке множество подделок, использующих плёнку корейского производства (применяется для тёплых полов и не предназначена для производства термоэлетроматов), и не подходящих для прогрева бетона.

Прочие способы[править | править код]

Электропрогрев бетона также может осуществляться следующими способами:[1]

  • обогрев в греющей опалубке;
  • инфракрасный обогрев;
  • индукционный нагрев.
  • обогрев жидкостными установками для прогрева поверхностей, обеспечивающий минимальные сроки схватывания, набора прочности и равномерный прогрев. Недостатком может быть только изначальная дороговизна самой установки, что достаточно быстро компенсируется за счёт значительного снижения сроков работ и малых эксплуатационных затрат.

Примечания[править | править код]

Литература[править | править код]