pandas
Pandas | |
---|---|
![]() | |
Тип | библиотека для Питона[d] и программа для численного анализа[d] |
Автор | |
Разработчик | Уэс Мак-Кинни[d] |
Написана на | Python[1] |
Последняя версия |
|
Лицензия | BSD |
Сайт | pandas.pydata.org |
pandas — программная библиотека на языке Python для обработки и анализа данных. Работа pandas с данными строится поверх библиотеки NumPy, являющейся инструментом более низкого уровня. Предоставляет специальные структуры данных и операции для манипулирования числовыми таблицами и временны́ми рядами. Название библиотеки происходит от эконометрического термина «панельные данные» (англ. panel data), используемого для описания многомерных структурированных наборов информации. pandas распространяется под новой лицензией BSD.
Область применения[править | править код]
Основная область применения — обеспечение работы в рамках среды Python не только для сбора и очистки данных, но для задач анализа и моделирования данных, без переключения на более специфичные для статобработки языки (такие, как R и Octave).
Также активно ведётся работа по реализации «родных» категориальных типов данных.
Пакет прежде всего предназначен для очистки и первичной оценки данных по общим показателям, например среднему значению, квантилям и так далее; статистическим пакетом[en] он в полном смысле не является, однако наборы данных типов DataFrame и Series применяются в качестве входных в большинстве модулей анализа данных и машинного обучения (SciPy, Scikit-Learn[en] и других).
Возможности[править | править код]
Основные возможности библиотеки:
- Объект DataFrame для манипулирования индексированными массивами двумерных данных
- Инструменты для обмена данными между структурами в памяти и файлами различных форматов
- Встроенные средства совмещения данных и способы обработки отсутствующей информации
- Переформатирование наборов данных, в том числе создание сводных таблиц
- Срез данных по значениям индекса, расширенные возможности индексирования, выборка из больших наборов данных
- Вставка и удаление столбцов данных
- Возможности группировки позволяют выполнять трёхэтапные операции типа «разделение, изменение, объединение» (англ. split-apply-combine).
- Слияние и объединение наборов данных
- Иерархическое индексирование позволяет работать с данными высокой размерности в структурах меньшей размерности
- Работа с временными рядами: формирование временных периодов и изменение интервалов и так далее
Библиотека оптимизирована для высокой производительности, наиболее важные части кода написаны на Cython и Си.
История[править | править код]
Разработка пакета начата в 2008 году сотрудником AQR Capital Management[en] Уэсом Маккини (англ. Wes McKinney). Перед уходом из AQR ему удалось убедить руководство позволить опубликовать исходный код библиотеки под свободной лицензией.
Другой работник AQR — Чан Шэ — присоединился к проекту в 2012 году, став вторым главным разработчиком библиотеки. Примерно в то же время библиотека набрала популярность в среде Python-разработчиков, и к проекту присоединилось множество новых участников.
Примечания[править | править код]
Литература[править | править код]
- Маккинни У. Python и анализ данных = Python for Data Analysis. — ДМК Пресс, 2015. — 482 с. — ISBN 978-5-97060-315-4, 978-1-449-31979-3.
- Бринк Х., Ричардс Д., Феверолф М. Машинное обучение. — Питер, 2018. — 336 с. — ISBN 978-5-496-02989-6.
- Вандер Плас Дж. Python для сложных задач. Наука о данных и машинное обучение = Python Data Science Handbook: Essential Tools for Working with Data. — Питер, 2017. — 576 с. — ISBN 978-5-496-03068-7.
- Хейдт М. Изучаем pandas = Learning pandas. — ДМК Пресс, 2018. — 432 с. — ISBN 978-5-97060-625-4.