Доменная стенка (магнетизм)
Доме́нная сте́нка — граница между магнитными доменами с различным направлением намагниченности.
Общие положения
[править | править код]Причиной образования магнитных доменных стенок является конкуренция между обменным взаимодействием и магнитной анизотропией, которые стремятся увеличить и уменьшить толщину стенки соответственно[1]. Толщина доменной стенки оценивается по порядку величины как
где A — коэффициент неоднородного обменного взаимодействия, K — коэффициент магнитной анизотропии (здесь они записаны в таком виде, что плотность обменного взаимодействия и магнитной анизотропии зависят или от размерного вектора намагниченности, или от единичного вектора, сонаправленного ему), a — расстояние между магнитными атомами (типично около 0,5·10−7 см), — обменное поле (также называемое молекулярным полем Вейса, порядка 107 Э), — поле анизотропии. Таким образом, толщину доменной стенки можно оценить как величину, лежащую в интервале 10—100 нм[2].
Виды доменных стенок
[править | править код]Классификация доменных стенок производится в зависимости от способа поворота вектора намагниченности внутри доменной стенки, а также от симметрии кристалла. К первому типу относятся доменные стенки типа Блоха и Нееля. Стенки второго типа имеют в названии указание угла, на который изменяется направление намагниченности в соседних доменах. Согласно второй классификации стенки Блоха и Нееля являются 180°-ми, то есть, соседние домены имеют антипараллельные векторы намагниченности[3].
Стенка Блоха
[править | править код]Поворот вектора намагниченности при переходе между доменами может происходить различным образом. В случае, если плоскость доменной стенки содержит ось анизотропии, то намагниченность в доменах будет параллельна стенке. Ландау и Лифшицем был предложен механизм перехода между доменами, в котором вектор намагниченности проворачивается в плоскости стенки, меняя своё направление на противоположное. Стенка такого типа была названа блоховской, в честь Феликса Блоха, впервые исследовавшего движение доменных стенок[3].
Стенка Нееля
[править | править код]Стенка Нееля отличается от блоховской стенки тем, что поворот намагниченности происходит не в её плоскости, а перпендикулярно ей. Обычно, её образование энергетически невыгодно[4]. Стенки Нееля образуются в тонких магнитных плёнках толщиной порядка или менее 100 нм. Причиной этого является размагничивающее поле, чья величина обратно пропорциональна толщине плёнки. Вследствие этого намагниченность ориентируется в плоскости плёнки, и переход между доменами происходит внутри той же плоскости, то есть перпендикулярно самой стенке[5].
Стенки с редуцированным углом
[править | править код]В материалах с многоосной анизотропией встречаются доменные стенки, в которых угол поворота намагниченности меньше 180°. К этому же эффекту приводит приложение поля перпендикулярно легкой оси материала с одноосной анизотропией[6].
Другие виды доменных стенок
[править | править код]Цилиндрические доменные стенки
[править | править код]Форма образца может существенно влиять на форму магнитных доменов и границ между ними. В цилиндрических образцах возможно образование доменов цилиндрической формы, расположенных радиально симметрично. Стенки между ними также называют цилиндрическими[7].
Теоретическое описание 180-градусной доменной стенки
[править | править код]В ферромагнетике, характеризующимся константой обменного взаимодействия и константой одноосной магнитной анизотропии (ось легкого намагничивания считаем направленной перпендикулярно поверхности образца), одномерная 180-градусная доменная граница может быть описана аналитически. Как уже было отмечено, структура доменной стенки определяется конкуренцией магнитной анизотропии и обменного взаимодействия. Объёмные плотности энергии обменного взаимодействия и энергии магнитной анизотропии вводятся следующим образом (для кубического кристалла)[8][9]:
где — компоненты нормированного на единицу вектора намагниченности , — угол между вектором намагниченности и осью легкого намагничивания.
Для того, чтобы описать доменную стенку Нееля следует также ввести объемную плотность магнитостатической энергии . Пусть ось декартовой системы координат направлена перпендикулярно плоскости доменной границы, тогда , где — нормальная компонента ненормированного вектора намагниченности к плоскости доменной границы. Поскольку модуль вектора намагниченности в рамках микромагнитной теории считается постоянным, то независимыми компонентами этого вектора являются две из трех. Поэтому удобно перейти к представлению компонент вектора намагниченности через углы сферической системы координат[9]:
где — полярный и азимутальный углы соответственно. Для того, чтобы компоненты вектора намагниченности были гладкими функциями , необходимо, чтобы сами по себе были гладкими функциями . Таким образом, мы предполагаем, что основная информация о структуре доменной стенки содержится в зависимостях .
В случае одномерной доменной границы, плоскость которой перпендикулярна оси , объемная плотность энергии выглядит следующим образом[10]:
Далее будем считать постоянным относительно . В таком случае:
Поскольку полная энергия ферромагнетика задается через интеграл от по объёму этого ферромагнетика (то есть, через некоторый функционал, зависящий от ), разумно использовать уравнения Эйлера — Лагранжа как уравнения, описывающие такие функции , на которых реализуется минимум полной энергии ферромагнетика. Для указанной плотности энергии уравнение Эйлера — Лагранжа имеет вид:
где [11]. Данное уравнение является нелинейным, поиск его решений является довольно трудной задачей. Поэтому воспользуемся другим путем. Отнесемся к как к функции Лагранжа, не зависящей от переменной интегрирования (в данном случае ). Поскольку функция Лагранжа не зависит явно от , то интегралом движения является обобщенная энергия :
Поскольку интерес представляет переход от одного домена к другому, локализованный на малых по сравнению с размером домена масштабах, константу можно положить равной нулю. Действительно, мы предполагаем выполнение следующих условий:
Таким образом, можно записать уравнение первой степени относительно :
- .
Решение этого уравнения имеет вид[12]:
Конкретный выбор знаков зависит от выбора граничных условий.
Из приведенной зависимости видно, что играет роль ширины доменной границы, и что ширина доменной стенки Нееля () меньше, чем ширина доменной стенки Блоха ().
См. также
[править | править код]Примечания
[править | править код]- ↑ Доменная стенка . Физическая энциклопедия. Дата обращения: 16 апреля 2011. Архивировано 29 февраля 2012 года.
- ↑ О. В. Третяк, В. А. Львов, О. В. Барабанов. Фізичні основи спінової електроніки. — К.: Київський університет, 2002. — С. 64—67. — 314 с. — ISBN 966-594-323-5.
- ↑ 1 2 Alex Hubert, Rudolf Schäfer. Magnetic Domains: The Analysis of Magnetic Microstructures. — Correct. ed. — Springer, 2008. — P. 215. — 714 p. — ISBN 978-3540641087.
- ↑ Alex Hubert, Rudolf Schäfer. Magnetic Domains: The Analysis of Magnetic Microstructures. — Correct. ed. — Springer, 2008. — P. 216. — 714 p. — ISBN 978-3540641087.
- ↑ Denny D. Tang, Yuan-Jen Lee. Magnetic Memory. Fundamentals and Technology. — Cambrige University Press, 2010. — P. 57—58. — 208 p. — ISBN 9780521449649.
- ↑ Alex Hubert, Rudolf Schäfer. Magnetic Domains: The Analysis of Magnetic Microstructures. — Correct. ed. — Springer, 2008. — P. 218. — 714 p. — ISBN 978-3540641087.
- ↑ M. Kladivová and J. Ziman. Domain-wall Mobility and Hall Effect in Cylindrical Ferromagnetic Sample (англ.) // Czechoslovak Journal of Physics : journal. — 2004. — Vol. 54, no. 4. — P. 35—38. — doi:10.1007/s10582-004-0025-3.
- ↑ Боков, 2002, с. 147.
- ↑ 1 2 Боков, 2002, с. 148.
- ↑ Боков, 2002, с. 152.
- ↑ Боков, 2002, с. 153.
- ↑ Боков, 2002, с. 151.
Литература
[править | править код]- В. А. Боков. Физика магнетиков. — Учебное пособие для вузов. — Невский Диалект, 2002. — 272 с. — ISBN 5-7940-0118-6.