Гипотеза Тёрстона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теорема геометризации утверждает, что замкнутое ориентируемое трёхмерное многообразие, в котором любая вложенная сфера ограничивает шар, разрезается несжимающимися торами на куски, на которых можно задать одну из стандартных геометрий.

Теорема геометризации для трёхмерных многообразий является аналогом теоремы униформизации (англ.) для поверхностей. Она была предложена в виде гипотезы Уильямом Тёрстоном в 1982, и обобщает другие гипотезы, например, гипотезу Пуанкаре и гипотезу эллиптизации Тёрстона (англ.).

Используя поток Риччи, в 2002 году Перельману удалось доказать гипотезу Тёрстона, проведя тем самым полную классификацию компактных трёхмерных многообразий, и в частности доказать гипотезу Пуанкаре.

Ссылки[править | править исходный текст]