Деление столбиком

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Процесс деления столбиком (американо-британский вариант) числа 1 260 257 на число 37

Деление столбиком — стандартная процедура в арифметике, предназначенная для деления простых или сложных многозначных чисел за счёт разбивания деления на ряд более простых шагов. Как и во всех задачах на деление, одно число, называемое делимым, делится на другое, называемое делителем, производя результат, называемый частным. Этот способ позволяет выполнять деление произвольно больших чисел, разбивая процесс на серию последовательных простых шагов.[1]


Обозначение в России, Казахстане, Киргизии, Франции, Бельгии, Испании, Украине, Беларуси, Молдове, Грузии, Таджикистане, Монголии[править | править исходный текст]

В России делитель располагается справа от делимого, отделяемого от него вертикальной чертой. Деление также происходит в столбик, но частное (результат) записывается ниже делителя и отделяется от него горизонтальной чертой.

    8420│4                   500│4    
   -8   │2105               -4  │125
      4                      10
    - 4                     - 8
        20                      20
     -                           -20
        20                      0
      
        0

Обозначение в Германии[править | править исходный текст]

В некоторых европейских странах применяется другое обозначение. Вычисление абсолютно такое же, но записывается иначе, как показано на примере:

     500 ÷ 4 =  125   (Пояснение) 
     4                (4 ×  1 = 4)
     10               (5 -  4 = 1)
      8               (4 ×  2 = 8)
      20             (10 -  8 = 2)
      20              (4 ×  5 = 20)
       0             (20 - 20 = 0)

и

     127 ÷ 4 = 31.75
     12         (12 - 12 = 0 который записан на следующей линии)                    
      07        (семь переносится из делимого 127) 
       4       
       3.0      (3 - это остаток, который разделён на 4 для получения 0.75)
       2 8      (7 × 4 = 28)
         20     (дополнительный ноль переносится)
         20     (5 × 4 = 20)
          0

Обозначение в Нидерландах[править | править исходный текст]

Вычисление абсолютно такое же, но записывается иначе (делитель располагается слева от делимого), как показано на примере деления 135 на 11 (с результатом 12 и остатком 3):


  11 / 135 \ 12
       11
       --
        25
        22
        --
         3


Обозначение в Америке и Великобритании[править | править исходный текст]

При делении на бумаге не используются символы косой черты (/) или обелюса (÷). Вместо этого делимое, делитель и частное (в процессе нахождения) располагаются в таблице. Пример деления 500 на 4 (с результатом 125):

     125     (Пояснение)
   4|500
     4        (4 ×  1 = 4)
     10       (5 -  4 = 1)
      8       (4 ×  2 = 8)
      20     (10 -  8 = 2)
      20      (4 ×  5 = 20)
       0     (20 - 20 = 0)

Пример деления с остатком:

      31.75     
   4|127
     12         (12 - 12 = 0 который записан на следующей линии)                    
      07        (семь переносится из делимого 127) 
       4       
       3.0      (3 - это остаток, который разделён на 4 для получения 0.75)
       2 8       (7 × 4 = 28)
         20     (дополнительный ноль переносится)
         20     (5 × 4 = 20)
          0


  1. Во-первых, обратите внимание на делимое (127), чтобы определить может ли делитель (4) вычитаться из него (в нашем случае не может, так как мы имеем единицу как первую цифру и мы не можем использовать отрицательные числа, поэтому нельзя написать −3)
  2. Если первая цифра недостаточно велика, мы берём вместе с ней следующую цифру. Таким образом в нашем распоряжении как первое число теперь будет число 12.
  3. Возьмите максимальное число четвёрок, которое может быть вычтено из первого числа. В нашем случае из 12 может быть вычтено 3 четвёрки
  4. В частном (над второй цифрой делимого, так как это последняя цифра которая используется) напишите получившуюся тройку, а под делимым число 12
  5. Вычтите 12, которую вы написали, из соответствующего числа выше него (результат будет, конечно, 0)
  6. Повторите первый шаг
  7. Так как 0 — неподходящее число для делимого, перенесите следующую цифру из делимого (7). В результате получится 07
  8. Повторите шаги 3, 4 и 7
  9. У вас будет число 31 в частном, 3 в качестве остатка и больше ни одного числа в делимом
  10. Можно продолжить деления, получая в частном десятичную дробь: добавьте к частному справа точку, а к остатку (3) справа ноль и продолжайте деление, добавляя ноль всякий раз когда делимое меньше делителя (4)

Примечания[править | править исходный текст]

  1. Weisstein, Eric W. Long Division (англ.) на сайте Wolfram MathWorld.

Ссылки[править | править исходный текст]