Механическая связь

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Механической связью называют ограничения, накладываемые на координаты и скорости механической системы, которые должны выполняться на любом её движении.

Связь можно описать математически[1] как равенство или неравенство, содержащее время, координаты и скорости.

Классификация связей[править | править вики-текст]

Если связь задаётся равенством, то говорят, что такая связь — удерживающая или двусторонняя:

 f(t, \mathbf{x}, \dot \mathbf{x}) = 0.

Если связь задаётся неравенством, то говорят, что такая связь — неудерживающая или односторонняя:

 f(t, \mathbf{x}, \dot \mathbf{x}) \le 0.

Если функция  f(t, \mathbf{x}, \dot \mathbf{x}) зависит явно от времени, то говорят, что связь — нестационарная или реономная; если же эта функция не зависит явно от времени, то говорят, что эта связь — стационарная или склерономная.

Если функция не зависит от скоростей, т. е.  f=f(t, \mathbf{x}), то говорят, что связь — геометрическая или голономная. Если не существует преобразования, приводящего функцию  f к такому виду, говорят, что связь — кинетическая (кинематическая) или неголономная.

Ещё связи бывают идеальными и неидеальными; условие идеальности связей не вытекает из вида уравнений или неравенств, задающих эти связи, а вводится дополнительно.

Примечания[править | править вики-текст]

  1. В реальности это может быть сделано лишь приближённо, поэтому сам способ изучения движения с использованием связей есть некоторое приближение (которое может и заметно отличаться от области применимости основной модели — притом ещё и отличаться для разных связей в одной и той же системе; такое отличие способно заметно изменить область применимости модели в целом).

См. также[править | править вики-текст]

Литература[править | править вики-текст]