Теорема Паули

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теорема Паули (теорема о связи спина со статистикой) — фундаментальная теорема квантовой теории поля, устанавливающая связь трансформационных свойств классических полей и методов его квантования. Впервые сформулирована и доказана Вольфгангом Паули в статье «Связь между спином и статистикой», поступившей 19 августа 1940 года в редакцию Physical Review.

Формулировка[править | править исходный текст]

Формулировка теоремы Паули[1]:

Классические поля, описывающие частицы с целым спином, квантуются по Бозе — Эйнштейну, а классические поля, описывающие частицы с полуцелым спином, квантуются по Ферми — Дираку.

Фактически, это означает, что фермионы, то есть частицы с полуцелым спином, антисимметричны, то есть при «перестановке» двух частиц состояние всей системы меняет знак, а частицы с целым спином (бозоны) — симметричны

Средства доказательства[править | править исходный текст]

Для доказательства теоремы о связи спина со статистикой (теоремы Паули) используются два постулата квантовой теории поля:

  • Операторнозначные функции двух квантовых наблюдаемых, относящихся к различным пространственно-временным точкам, разделенным пространственно-подобным интервалом, коммутируют;
  • Энергия квантовополевой системы положительно определена.

Для доказательства теоремы важна локальность квантовой теории поля.

Теорема Паули была доказана для идеализированного случая свободных классических полей. Для взаимодействующих полей утверждение аналогичное теореме Паули было доказано в рамках так называемой аксиоматической квантовой теории поля[2][3].

Следствия[править | править исходный текст]

Из теоремы Паули вытекает вид перестановочных соотношений между операторами рождения и уничтожения частиц: бозонные операторы должны связаны отношениями коммутации, фермионные — антикоммутации.

Из теоремы Паули следует принцип запрета Паули нерелятивистской квантовой механики о невозможности нахождения двух невзаимодействующих фермионов в одном и том же квантовом состоянии.

Примечания[править | править исходный текст]

Ссылки[править | править исходный текст]

Литература[править | править исходный текст]