Дескриптивное множество
Дескриптивное множество — конечное множество, каждому элементу которого поставлено в соответствие неотрицательное число («вес»)[1].
В случае фиксированного для определённого исследования элементов дескриптивного множества, можно использовать вместо дескриптивного множества эквивалентное понятие дескриптивный набор, то есть вектор, компонентами которого являются веса. Основное требование, предъявляемое к дескриптивным наборам теорией измерений — однородность компонентов набора, то есть каждый компонент набора должен быть измерен в одной и той же шкале отношений. Это свойство дескриптивных наборов позволяет находить сумму его компонентов.
Формальное определение
[править | править код]Дескриптивное множество A определяется заданием весов для каждого элемента множества X:
Если элементы множества A не меняются при исследовании, то дескриптивное множество полностью определяется упорядоченным набором весов или дескриптивным набором. Выделяют 5 типов весов дескриптивных множеств[2][3]:
- при i = 1,…,r. Обычные конечные множества.
- при i = 1,…,r. Конечные мультимножества.
- при i = 1,…,r. Весовые (дескриптивные) множества.
- при i = 1,…,r. Нормированные дескриптивные векторы по компонентам.
- при i = 1,…,r. Нормированные дескриптивные векторы в общем.
Наборы, компоненты которых состоят из 0 и 1 называют дескриптивными булевыми наборами.
Область применения
[править | править код]Используется в биологии для представления и последующего сравнения данных по видовому обилию участков, различных биологических спектров.
Источники и примечания
[править | править код]- ↑ Сёмкин Б. И. Дескриптивные множества и их приложения // Исследование систем. Т. 1. Анализ сложных систем. Владивосток: ДВНЦ АН СССР. 1973. С. 83-94.
- ↑ Semkin B.I. The axiomatic approach to introducing measures for ordering and classification of descriptive sets // Pattern Recognition and Image Analysis. 2011. V.21. №.2. P. 164—166.
- ↑ Semkin B.I. Elementary theory of similarities and its use in biology and geography // Pattern Recognition and Image Analysis. 2012. V.22. № 1. P. 92-98.
См. также
[править | править код]Это заготовка статьи по математической логике. Помогите Википедии, дополнив её. |