Дилогарифм

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Действительная и мнимая части функции

Дилогари́фмспециальная функция в математике, которая обозначается и является частным случаем (n=2) полилогарифма . Дилогарифм определяется как

Приведённое определение дилогарифма верно для комплексных значений переменной z. Для действительных значений z=x у этой функции есть разрез вдоль действительной оси от 1 до . Обычно значение функции на разрезе определяется так, что мнимая часть дилогарифма отрицательна:

Функцию часто называют дилогарифмом Эйлера, в честь Леонарда Эйлера, который рассмотрел эту функцию в 1768 году[1]. Иногда дилогарифм называют функцией Спенса (Spence's function), в честь шотландского математика Уильяма Спенса (William Spence, 1777—1815)[2], который в начале XIX века исследовал функции, соответствующие и . Название "дилогарифм" было введено Хиллом (C.J. Hill) в 1828 году.

Функциональные соотношения[править | править вики-текст]

Для дилогарифма существует ряд полезных функциональных соотношений,

Для действительных ,

Известны также соотношения, содержащие две независимые переменные — например, тождество Хилла:

Частные значения[править | править вики-текст]

Используя соотношение между функциями от x и 1/x, получаем

Существует также ряд результатов для аргументов, связанных с золотым сечением ,

а также для дилогарифма мнимого аргумента,

где Gпостоянная Каталана.

Соотношения для частных значений

Функции, связанные с дилогарифмом[править | править вики-текст]

  • Функция Клаузена
Возникает при рассмотрении дилогарифма, аргумент которого находится на единичной окружности в комплексной плоскости,
Таким образом,
  • Функция Лобачевского
Эта функция используется при вычислении объёмов в гиперболической геометрии, и она связана с функцией Клаузена (а следовательно и с дилогарифмом),
Иногда используется другое определение функции Лобачевского,
  • Интегральный арктангенс
Возникает при рассмотрении дилогарифма мнимого аргумента,
Таким образом,
Эта функция выражается через дилогарифмы как
В частности, .

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]

  • Leonard Lewin,. Dilogarithms and associated functions. — Macdonald, London, 1958. MR0105524
  • Leonard Lewin,. Polylogarithms and associated functions. — North Holland, New York, Oxford, 1981.
  • Don Zagier, The dilogarithm function (PDF)
  • Weisstein, Eric W. Dilogarithm (англ.) на сайте Wolfram MathWorld.