Жёсткость Мостова

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Жёсткость Мостова утверждает, что геометрия гиперболического многообразия конечного объёма в размерностях, начиная с трёх, полностью определяется его фундаментальной группой.

История[править | править код]

Для замкнутых многообразий теорема была доказана Джорджем Мостовым в 1968 году. Обобщена на многообразия конечного объёма размерности Марденом и Прасадом (англ. Prasad). Громов дал другое доказательство — основанное на симплициальном объёме.

До этого Вейль доказал тесно связаные утверждения. В частности то, что кокомпактные действия дискретных групп изометрий гиперболического пространства размерности не менее 3 не допускают нетривиальных деформаций.

Формулировки[править | править код]

Геометрическая формулировка[править | править код]

Пусть M и N — полные гиперболические n-мерные многообразия конечного объёма с n≥3. Тогда любой изоморфизм fπ1(M) → π1(N) индуцируется изометрией M N.

Здесь π1(M) обозначает фундаментальную группу многообразия M.

Алгебраическая формулировка[править | править код]

Пусть Γ и Δ — дискретные подгруппы группы G изометрий n-мерного гиперболического пространства H с n≥3, чьи фактор-пространства H/Γ и H/Δ имеют конечные объёмы. Тогда изоморфность Γ и Δ как дискретных групп влечёт их сопряжённость в G.

Приложения[править | править код]

Ссылки[править | править код]