Критерий Сильвестра

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Критерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой.

Пусть квадратичная форма имеет в каком-то базисе матрицу

Тогда эта форма положительно определена тогда и только тогда, когда все её угловые миноры положительны. Форма отрицательно определена, тогда и только тогда, когда знаки чередуются, причём . Здесь угловыми минорами матрицы называются определители вида

Для положительно полуопределённых матриц критерий звучит подобным образом: Форма положительно полуопределена тогда и только тогда, когда все главные миноры неотрицательны. Здесь главным минором называется определитель подматрицы симметричной относительно главной диагонали, то есть подматрицы, у которой множества задающих её номеров столбцов и строк одинаковые (напр. 1-й и 3-й столбцы и строки, на пересечении которых расположена матрица).

Доказательство[править | править вики-текст]

Критерий положительной определённости квадратичной формы[править | править вики-текст]

Доказательство критерия Сильвестра основано на методе Якоби приведения квадратичной формы к каноническому виду.

Для положительной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры её матрицы были положительны.


1. «Необходимо.» Имеется положительно определённая квадратичная форма. j-ый диагональный элемент положителен, так как k(x)>0 в том числе и для вектора со всеми нулевыми координатами, кроме j-ой. При приведении матрицы к каноническому виду не будет нужно переставлять строки, и знаки главных миноров матрицы не изменятся. А в каноническом виде диагональные элементы положительны, и миноры положительны; следовательно, (так как их знак не менялся при преобразованиях), у положительно определённой квадратичной формы в любом базисе главные миноры матрицы положительны.

2. «Достаточно.» Имеется положительность миноров. Первый минор определяет знак первого диагонального элемента в каноническом виде. Знак отношения Mi+1/Mi определяет знак i+1-го элемента в диагональном виде. Так получим, что в каноническом виде все элементы на диагонали положительные, то есть квадратичная форма определена положительно.[1]

Критерий отрицательной определённости квадратичной формы[править | править вики-текст]

Для отрицательной определённости квадратичной формы необходимо и достаточно, чтобы угловые миноры чётного порядка её матрицы были положительны, а нечётного порядка — отрицательны.


Доказательство сводится к предыдущему случаю, так как матрица является отрицательно определённой тогда и только тогда, когда матрица является положительно определённой. При замене матрицы на противоположную главные миноры нечётного порядка меняют знак, а главные миноры чётного порядка остаются такими же.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Д. В. Беклемишев, Курс аналитической геометрии и линейной алгебры, Москва: ФИЗМАТЛИТ, 2007.