Сумма Римана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Четыре метода суммирования по Риману для аппроксимации области, расположенной между кривой и осью абсцисс. Аппроксимация правым и левым методами производится с использованием правых и левых предельных точек на каждом подынтервале соответственно. Методы максимума и минимума осуществляют аппроксимацию с использованием наибольшего и наименьшего значений предельных точек на каждом подынтервале соответственно.

Сумма Римана — один из механизмов определения интеграла через сумму вида .

Определение[править | править вики-текст]

Пусть является функцией определённой на подмножестве на вещественной прямой .

 — замкнутый интервал содержащийся в .

является разбиением , в котором .


Сумма Римана функции с разбиением определяется следующим образом:

где . Выбор в данном интервале является произвольным. Если для всех , тогда называется левой суммой Римана. Если , тогда называется правой суммой Римана. Если , тогда называется средней суммой Римана. Усреднённое значение левой и правой суммы Римана называется трапециевидной суммой.


Если Сумма Римана представляется в виде:

где является точной верхней границей множества на интервале , то называется верхней суммой Римана. Аналогично, если является точной нижней границей множества интервале , то называется нижней суммой Римана.


Любая сумма Римана с заданным разбиением (при выборе любого значения из интервала ) находится между нижней и верхней суммами Римана.


Если для функции и отрезка существует предел сумм Римана, когда шаг разбиения стремится к нулю (независимо от выбора ), то этот предел называют интегралом Римана функции на отрезке и обозначается .

Литература[править | править вики-текст]