Теорема Ролля
Теорема Ро́лля (теорема о нуле производной) — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что
Если вещественная функция, непрерывная на отрезке и дифференцируемая на интервале , принимает на концах отрезка одинаковые значения, то на интервале найдётся хотя бы одна точка, в которой производная функции равна нулю. |
Доказательство[править | править код]


Если функция на отрезке постоянна, то утверждение очевидно, поскольку производная функции равна нулю в любой точке интервала.
Если же нет, поскольку функция непрерывна на , то согласно теореме Вейерштрасса, она принимает своё наибольшее или наименьшее значение в некоторой точке интервала, то есть имеет в этой точке локальный экстремум, и по лемме Ферма производная в этой точке равна 0.
Геометрический и физический (механический) смысл[править | править код]
С геометрической точки зрения теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
Механический смысл теоремы в том, что если некоторое тело вернулось в исходную точку, двигаясь по незамкнутой линии, то оно обязано было хотя бы раз остановиться до нулевой скорости.
Существенность условий теоремы и соответствующие контрпримеры[править | править код]
Все условия теоремы: непрерывность функции на отрезке, дифференцируемость на интервале и равенство значений на концах отрезка - существенны. При исключении каждого из этих условий легко подобрать контрпример, свидетельствующий, что заключение теоремы становится неверным.
Следствия[править | править код]
1° Если дифференцируемая функция обращается в нуль в различных точках, то её производная обращается в нуль по крайней мере в различных точках[1], причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.
2° Если все корни многочлена -ой степени действительные, то и корни всех его производных до включительно — также исключительно действительные.
3° (Теорема Лагранжа) Дифференцируемая функция на отрезке между двумя своими точками имеет касательную, параллельную секущей/хорде, проведённой через эти две точки.
См. также[править | править код]
Примечания[править | править код]
- ↑ Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. — Численные методы, стр.43
Литература[править | править код]
- Фихтенгольц Г. М. Основы математического анализа. — М.: «Наука», 1962. — Т. 1. — С. 225. — 607 с.