Формула конечных приращений

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Приращение

Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что если функция непрерывна на отрезке и дифференцируема в интервале , то найдётся такая точка , что

.

Геометрически это можно переформулировать так: на отрезке найдётся точка, в которой касательная параллельна хорде, проходящей через точки графика, соответствующие концам отрезка.

Механическое истолкование: Пусть  — расстояние точки в момент от начального положения. Тогда есть путь, пройденный с момента до момента , отношение  — средняя скорость за этот промежуток. Значит, если скорость тела определена в любой момент времени , то в некоторый момент она будет равна своему среднему значению на этом участке.

Доказательство[править | править вики-текст]

Для функции одной переменной:

Введем функцию . Для неё выполнены условия теоремы Ролля: на концах отрезка её значения равны нулю. Воспользовавшись упомянутой теоремой, получим, что существует точка , в которой производная функции равна нулю:

что и требовалось доказать.

Следствия и обобщения[править | править вики-текст]

Теорема Лагранжа о конечных приращениях - одна из самых важных, узловая теорема во всей системе дифференциального исчисления. Она имеет массу приложений в вычислительной математике, и главнейшие теоремы математического анализа также являются её следствиями.

Следствие 1. Дифференцируемая на отрезке функция с производной, равной нулю, есть константа.

Доказательство. Для любых и существует точка , такая что .

Значит, при всех и верно равенство .

Замечание. Аналогично доказывается следующий важный критерий монотонности для дифференцируемых функций: Дифференцируемая функция возрастает/убывает на отрезке тогда и только тогда, когда её производная на этом отрезке неотрицательна/неположительна. При этом строгая положительность/отрицательность производной влечёт строгую монотонность функции .

Следствие 2 (Формула Тейлора с остаточным членом в форме Лагранжа). Если функция дифференцируема раз в окрестности точки , то для малых (т.е. тех, для которых отрезок лежит в указанной окрестности) справедлива формула Тейлора:

где - некоторое число из интервала .

Замечание. Данное следствие является в то же время и обобщением. При из него получается сама теорема Лагранжа о конечных приращениях.

Следствие 3. Если функция переменных дважды дифференцируема в окрестности точки О и все её вторые смешанные производные непрерывны в точке О, тогда в этой точке справедливо равенство:

Доказательство для . Зафиксируем значения и и рассмотрим разностные операторы

и .

По теореме Лагранжа существуют числа , такие что

при в силу непрерывности вторых производных функции .

Аналогично доказывается, что .

Но так как , (что проверяется непосредственно), то эти пределы совпадают.

Замечание. Следствием этой формулы является тождество для оператора внешнего дифференциала, определённого на дифференциальных формах.

Следствие 4 (Формула Ньютона-Лейбница). Если функция дифференцируема на отрезке и её производная интегрируема по Риману на этом отрезке, то справедлива формула: .

Доказательство. Пусть - произвольное разбиение отрезка . Применяя теорему Лагранжа, на каждом из отрезков найдём точку такую, что .

Суммируя эти равенства, получим:

Слева стоит интегральная сумма Римана для интеграла и заданного отмеченного разбиения. Переходя к пределу по диаметру разбиения, получим формулу Ньютона-Лейбница.

Замечание. Следствием (и обобщением) формулы Ньютона-Лейбница является формула Стокса, а следствием формулы Стокса является интегральная теорема Коши - основная теорема теории аналитических функций (ТФКП).

Следствие 5 (Теорема об оценке конечных приращений). Пусть отображение непрерывно дифференцируемо в выпуклой компактной области пространства . Тогда .

Замечание. Без использования теоремы об оценке конечных приращений не обходятся доказательства таких теорем, как теорема об обратном отображении, теорема о неявной функции, теорема о существовании и единственности решения задачи Коши для обыкновенных дифференциальных уравнений.

См. также[править | править вики-текст]