Уравнения Лагранжа второго рода

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Уравне́ния Лагра́нжа второ́го ро́да (англ. Lagrange equations of the second kind) — дифференциальные уравнения движения механической системы, получаемые при применении лагранжева формализма.

Вид уравнений[править | править вики-текст]

Если голономная механическая система описывается лагранжианом ( — обобщённые координаты, t — время, точкой обозначено дифференцирование по времени) и в системе действуют только потенциальные силы, то уравнения Лагранжа второго рода имеют вид

,

где i = 1, 2, … n (n — число степеней свободы механической системы). Лагранжиан представляет собой разность кинетической и потенциальной энергий системы.

При наличии и потенциальных (), и непотенциальных () обобщённых сил появляется правая часть:

.

К непотенциальным силам относится, например, сила трения. При этом можно перезаписать уравнения Лагранжа второго рода в несколько иной форме:

,

где кинетическая энергия системы, обобщённая сила.

Вывод уравнений[править | править вики-текст]

Уравнения Лагранжа в механике получаются из законов динамики Эйлера (баланса количества движения и момента количества движения) при определённых ограничениях на систему: в ней должны присутствовать лишь идеальные голономные связи. Это частный, хотя и очень важный случай механических систем. Для других случаев получаются модификации уравнений Лагранжа.

Если для рассматриваемой системы актуален принцип наименьшего действия (ему подчиняются далеко не все физические системы), вывод можно провести иначе. В лагранжевой механике вывод уравнений осуществляется на основе данного принципа, гласящего, что функционал

,

называемый действием, принимает минимальное значение на траектории системы (t1 и t2 — начальный и конечный моменты времени). Применяя к функционалу действия стандартную схему оптимизации, получим для него уравнения Лагранжа — Эйлера, которые и называются уравнениями Лагранжа второго рода для механической системы. Ниже дан вывод уравнения для системы с одной обобщённой координатой и скоростью.

Будем считать, что вариация на границах равна нулю:

.

Изменение действия при переходе из состояния в есть

.

Разлагая эту разность по степеням, получим:

.

Варьируя это выражение, получаем:

.

Замечая, что , проинтегрируем второй член по частям:

.

Первое слагаемое равно нулю исходя из самой первой формулы вывода. Второе слагаемое может быть равно нулю, только если подынтегральное выражение равно нулю. Таким образом, получаем искомое уравнение Лагранжа:

.

См. также[править | править вики-текст]