Кинетическая энергия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему[1], энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательного движения[2].

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3].

Простым языком, кинетическая энергия - это энергия, которую тело имеет только при движении. Когда тело не движется, кинетическая энергия равна нулю.

История[править | править вики-текст]

Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвященных понятию «живой силы» [4].

Физический смысл[править | править вики-текст]

Рассмотрим систему, состоящую из одной материальной точки, и запишем второй закон Ньютона:

 — есть равнодействующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение материальной точки . Учитывая, что , получим:

Если система замкнута, то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то , а величина

остаётся постоянной. Эта величина называется кинетической энергией материальной точки. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где:

 — масса тела

 — скорость центра масс тела

 — момент инерции тела

 — угловая скорость тела.

Физический смысл работы[править | править вики-текст]

Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение её кинетической энергии[5]:

Свойства кинетической энергии[править | править вики-текст]

  • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
  • Инвариантность по отношению к повороту системы отсчета. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
  • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[6][7].

Релятивизм[править | править вики-текст]

При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

где:

 — масса объекта;

 — скорость движения объекта в выбранной инерциальной системе отсчета;

 — скорость света в вакууме ( — энергия покоя).

Данную формулу можно переписать в следующем виде:

При малых скоростях () последнее соотношение переходит в обычную формулу .

Соотношение кинетической и внутренней энергии[править | править вики-текст]

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — Постоянная Больцмана.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 3 4 Айзерман, 1980, с. 49.
  2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 360. — 704 с.
  3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
  4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
  5. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
  6. Айзерман, 1980, с. 54.
  7. Сорокин В. С. "Закон сохранения движения и мера движения в физике" // УФН, 59, с. 325–362, (1956)

Литература[править | править вики-текст]