TEV-протеаза

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
TEV-протеаза
Идентификаторы
Шифр КФ 3.4.22.44
Номер CAS 139946-51-3
Базы ферментов
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
MetaCyc metabolic pathway
KEGG KEGG entry
PRIAM profile
PDB structures RCSB PDB PDBe PDBj PDBsum
Поиск
PMC статьи
PubMed статьи
NCBI NCBI proteins
CAS 139946-51-3
Логотип Викисклада Медиафайлы на Викискладе

Протеаза TEV (от англ. Tobacco Etch Virus — вирус гравировки табака) — высокоспецифичная цистеиновая протеаза вируса гравировки табака. Относится к суперсемейству PA из химотрипсин-подобных протеаз. Благодаря своей высокой специфичности к последовательности часто используется для контролируемого расщепления гибридных белков in vitro и in vivo.[1]

Происхождение[править | править код]

Весь геном вируса гравировки табака кодирует единственный массивный полипротеин (350 кДа), который расщепляется на функциональные блоки тремя протеазами: Р1-протеазой (1 сайт расщепления), HC-Pro (1 сайт расщепления) и TEV-протеазой (7 сайтов расщепления).[2] Нативная протеаза также содержит внутренний участок саморасщепления. Этот участок медленно расщепляется, чтобы инактивировать фермент (физиологическая причина этого неизвестна).

Структура и функции[править | править код]

Структура TEV-протеазы. Два β-цилиндра, которые присущи надсемейству, выделены красным цветом. (PDB 1lvm)

Структура TEV-протеазы была определена с помощью рентгеновской кристаллографии.[3] Фермент состоит из двух β-цилиндров и гибкого C-конца, что показывает структурную гомологию с суперсемейством трипсиновых протеиназ (PA-клан,  семейство С4 по классификации MEROPS).[4] Несмотря на гомологию с  сериновыми протеазами (такими как трипсин, эластаза, тромбин и т. д.), в протеазе TEV используется цистеин в качестве каталитического центра[5] (как и во многих других вирусных протеазах).

Ковалентный катализ происходит с помощью триады Asp-His-Cys, разделенной между двумя β-цилиндрамим (Asp находится на β1, а His и Cys на β2).[6] Субстрат удерживается в виде β-листа, образуя антипараллельное взаимодействие с бороздкой между двумя цилиндрами и параллельное взаимодействие с C-концом.[7] Таким образом, фермент образует связывающий туннель вокруг субстрата, а взаимодействия боковой цепи обеспечивают специфичность.[3]

Специфичность[править | править код]

Модель поверхности TEV-протеазы, связанной с нерасщёплённым субстратом (черный), также показана каталитическая триада (красный). Субстрат связывается в активном центре тоннеля (слева). В разрезе (справа) показана комплиментарная субстрату форма связывающего тоннеля. (PDB 1lvb)

Естественная последовательность расщепления была сначала определена путем изучения участков разрезания в нативном полипротеиновом субстрате для повторяющейся последовательности. Консенсусной последовательностью нативного сайта расщепления является ENLYFQ\S (где ‘\’ обозначает расщепляемую пептидную связь).[8] Аминокислотные остатки субстрата нумеруются с Р6 по Р1 до сайта расщепления и Р1’ после вырезанного участка. В ранних работах также проводили оценку расщепления массива схожих субстратов, чтобы определить насколько специфично фермент будет расщеплять нативную последовательность.[9][10]

В исследованиях впоследствии применялось секвенирование расщепляемых субстратов из пула рандомизированных последовательностей для определения предпочтительных паттернов.[11][12] Хотя ENLYFQ\S — это оптимальная последовательность, протеаза активна в большей или меньшей степени на различных субстратах (т. е. проявляет некоторую вариабельность). Наиболее эффективное расщепление происходит в последовательностях наиболее похожих на консенсус EXLYΦQ\φ, где X - любой аминокислотный остаток, Φ - любой большой или  гидрофобный остаток среднего размера, а φ - любой небольшой гидрофобный или полярный аминоктслотный остаток.

Специфичность обеспечивается большой площадью контакта между ферментом и субстратом. Протеазы, такие как трипсин,  специфичны для одного аминокислотного остатка до и после расщепляемой связи за счет мелкой связывающей щели только с одним или двумя карманами, которые связывают боковые цепи субстрата. И наоборот, вирусные протеазы, такие как TEV-протеаза, имеют длинный C-концевой хвост, который полностью закрывает субстрат для создания связывающего тоннеля. Этот туннель содержит набор связывающих карманов, так что каждая боковая цепь пептидного субстрата (с Р6 до Р1’) связывается с комплиментарным сайтом (с С6 до С1’).[3]

В частности, пептидная боковая цепь P6-Glu контактирует с сетью из трех водородных связей; P5-Asn указывает на растворитель, не создавая специфичных взаимодействий (по этой причине отсутствует консенсус в последовательности субстрата в данном положении); P4-Leu погружает в гидрофобный карман; P3-Tyr удерживает в гидрофобном кармане с короткой водородной связью в конце; P2-Phe также окружен гидрофобнымими остатками, включая поверхность триады гистидина; P1-Gln образует четыре водородные связи; и P1'-Ser только частично заключен в мелкую гидрофобную канавку.[3]

В качестве биохимического инструмента[править | править код]

Одним из основных направлений использования этого фермента является удаление афинных тагов из препаратов очищенного гибридного белка. Причиной использования TEV-протеазы в качестве биохимического инструмента является его высокая специфичность к последовательности. Это делает его относительно нетоксичным in vivo, поскольку узнаваемая им последовательность почти не встречается в белках.[13]

Хотя рациональное конструирование имело ограниченный успех в изменении специфичности протеазы, направленная эволюция использовалась для смены предпочтительного остатка до[14] либо после[15][16] сайта расщепления.

TEV-протеаза имеет ограничения в использовании. Она склонна к дезактивации путем саморасщепления, хотя этого можно избежаь путём мутации S219V во внутреннем сайте разрезания[17]. Протеаза экспрессированная в одиночку плохо растворима;  было сделано несколько попыток для улучшения её растворимости путем направленной эволюции и компьютерного моделирования. Кроме того, было показано, что экспрессия может быть улучшена путем слияния с мальтоза-связывающим белком, который повышает растворимость партнера.

Молекулярная масса этого фермента лежит в пределах от 25 до 27 кДа в зависимости от того, какая конструкция используются.

Внешние ссылки[править | править код]

Ссылки[править | править код]

  1. Kapust R.B., Waugh D.S. Controlled intracellular processing of fusion proteins by TEV protease (англ.) // Protein Expression and Purification  (англ.) : journal. — 2000. — July (vol. 19, no. 2). — P. 312—318. — doi:10.1006/prep.2000.1251. — PMID 10873547.
  2. UniProt: TEV polyprotein: P04517. Дата обращения: 11 июля 2017. Архивировано 27 декабря 2016 года.
  3. 1 2 3 4 Phan J., Zdanov A., Evdokimov A.G., Tropea J.E., Peters H.K., Kapust R.B., Li M., Wlodawer A., Waugh D.S. Structural basis for the substrate specificity of tobacco etch virus protease (англ.) // Journal of Biological Chemistry : journal. — 2002. — December (vol. 277, no. 52). — P. 50564—50572. — doi:10.1074/jbc.M207224200. — PMID 12377789.
  4. Rawlings N.D., Barrett A.J., Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors (англ.) // Nucleic Acids Research  (англ.) : journal. — 2012. — January (vol. 40, no. Database issue). — P. D343—50. — doi:10.1093/nar/gkr987. — PMID 22086950. — PMC 3245014.
  5. Bazan J.F., Fletterick R.J. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1988. — November (vol. 85, no. 21). — P. 7872—7876. — doi:10.1073/pnas.85.21.7872. — Bibcode1988PNAS...85.7872B. — PMID 3186696. — PMC 282299.
  6. Dougherty W.G., Parks T.D., Cary S.M., Bazan J.F., Fletterick R.J. Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase (англ.) // Virology : journal. — 1989. — September (vol. 172, no. 1). — P. 302—310. — doi:10.1016/0042-6822(89)90132-3. — PMID 2475971.
  7. Tyndall J.D., Nall T., Fairlie D.P. Proteases universally recognize beta strands in their active sites (англ.) // Chemical Reviews  (англ.) : journal. — 2005. — March (vol. 105, no. 3). — P. 973—999. — doi:10.1021/cr040669e. — PMID 15755082.
  8. Carrington J.C., Dougherty W.G. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1988. — May (vol. 85, no. 10). — P. 3391—3395. — doi:10.1073/pnas.85.10.3391. — Bibcode1988PNAS...85.3391C. — PMID 3285343. — PMC 280215.
  9. Dougherty W.G., Cary S.M., Parks T.D. Molecular genetic analysis of a plant virus polyprotein cleavage site: a model (англ.) // Virology : journal. — 1989. — August (vol. 171, no. 2). — P. 356—364. — doi:10.1016/0042-6822(89)90603-X. — PMID 2669323.
  10. Kapust R.B., Tözsér J., Copeland T.D., Waugh D.S. The P1' specificity of tobacco etch virus protease (англ.) // Biochemical and Biophysical Research Communications  (англ.) : journal. — 2002. — June (vol. 294, no. 5). — P. 949—955. — doi:10.1016/S0006-291X(02)00574-0. — PMID 12074568.
  11. Boulware K.T., Jabaiah A., Daugherty P.S. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics (англ.) // Biotechnology and Bioengineering  (англ.) : journal. — 2010. — June (vol. 106, no. 3). — P. 339—346. — doi:10.1002/bit.22693. — PMID 20148412.
  12. Kostallas G., Löfdahl PÅ, Samuelson P. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay (англ.) // PLoS ONE : journal. — 2011. — Vol. 6, no. 1. — P. e16136. — doi:10.1371/journal.pone.0016136. — PMID 21267463. — PMC 3022733.
  13. Parks T.D., Leuther K.K., Howard E.D., Johnston S.A., Dougherty W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase (англ.) // Analytical Biochemistry  (англ.) : journal. — 1994. — February (vol. 216, no. 2). — P. 413—417. — doi:10.1006/abio.1994.1060. — PMID 8179197.
  14. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2013. — April (vol. 110, no. 18). — P. 7229—7234. — doi:10.1073/pnas.1215994110. — PMID 23589865.
  15. A tobacco etch virus protease with increased substrate tolerance at the P1' position (англ.) // PLoS ONE : journal. — 2013. — Vol. 8, no. 6. — P. e67915. — doi:10.1371/journal.pone.0067915. — PMID 23826349.
  16. Intracellular detection and evolution of site-specific proteases using a genetic selection system (англ.) // Appl. Biochem. Biotechnol. : journal. — 2012. — March (vol. 166, no. 5). — P. 1340—1354. — doi:10.1007/s12010-011-9522-6. — PMID 22270548.
  17. Kapust R.B., Tözsér J., Fox J.D., Anderson D.E., Cherry S., Copeland T.D., Waugh D.S. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency (англ.) // Protein Eng. : journal. — 2001. — December (vol. 14, no. 12). — P. 993—1000. — doi:10.1093/protein/14.12.993. — PMID 11809930.