Энергетическая утилизация отходов

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Waste-to-energy»)
Перейти к навигации Перейти к поиску

Энергетическая утилизация отходов, или энергия из отходов (англ. Waste-to-Energy, W2E) — это процесс выработки электрической и тепловой энергии в результате мусоросжигания. В качестве топлива используются твёрдые бытовые отходы, прошедшие предварительную сортировку. Строительство и эксплуатация таких предприятий часто рассматривают как элемент комплексной системы обращения с отходами, способный снизить экологические риски и уменьшить экологический ущерб, связанные с захоронением неперерабатываемых ТБО на полигонах. Современные заводы по переработке отходов в энергию сильно отличаются от мусоросжигательных установок, которые использовали несортированный мусор и крайне ограниченно вырабатывали электроэнергию.

История[править | править код]

Основная статья: Мусоросжигание

До Промышленной революции XVIII—XIX веков люди использовали в быту предметы природного происхождения, которые можно было сжечь или оставить перегнивать. Бытовая утилизация мусора существует на протяжении всей истории человечества, часто деревянный мусор использовали в качестве дров. Ситуация стала изменяться в период индустриализации, когда в странах Европы и Северной Америки в быту стали распространяться изделия из синтетических материалов, не подверженных естественному разложению, объёмы их производства и потребления росли, и человечество стало производить всё больше мусора[1][2].

В 1874 году в Ноттингеме был построен первый в мире мусоросжигательный завод, а затем там же была построена первая паровая установка, где мусор использовался в качестве топлива — так промышленное мусоросжигание впервые нашло энергетическое применение. В 1880 году в Нью-Йорке был построен первый в США мусоросжигательный завод. Однако вплоть до 1960-х годов мусоросжигание в США практиковалось в основном на автономных установках, а специализированные заводы были мало распространены. Кроме того, в конце XIX века в американских городах строились мусоросжигательные установки в многоквартирных домах, которые использовались и для их отопления[1][2].

В континентальной Европе первой страной, внедрившей у себя промышленное мусоросжигание, стала Франция. Первый французский мусоросжигательный завод был построен рядом с Парижем в 1893 году, а в 1896 году в Сент-Уэне заработал первый в мире мусоросжигательный завод с измельчающей машиной. В 1930 году в Швейцарии была разработана печь с колосниковой решёткой для слоевого сжигания мусора — это была принципиально новая технология мусоросжигания, которая позволила отказаться от использования мазута и каменного угля в качестве топлива для равномерного распределения температуры в печи, что значительно снизило себестоимость мусоросжигания, а также повысило его эффективность. В 1933 году в Дордрехте в Нидерландах открылась первая в мире тепловая электростанция, работающая на энергии мусоросжигания. В 1970-е годы мусоросжигание получило новый виток развития на волне мирового энергетического кризиса, когда значительно выросли цены на нефть. Мусор в то время стал всё чаще рассматриваться в качестве топлива для производства тепловой и электроэнергии[2].

Место энергетической утилизации в системе обращения с отходами[править | править код]

Международное энергетическое агентство называет энергетическую утилизацию отходов с контролируемым высокотемпературным сжиганием и технологией контроля за загрязнением окружающей среды лучшей альтернативой полигонам ТКО. Отмечается, что часто полигоны для захоронения отходов не отвечают санитарным нормам и становятся местом бесконтрольного сжигания отходов, что негативно влияет на качество воздуха. При этом энергетическая утилизация — это в первую очередь часть системы обращения с отходами, а не энергетическое решение, хотя может способствовать диверсификации энергоснабжения[3].

Фабрика SYSAV[en] в Мальмё

Как указывает агентство, энергетическую утилизацию следует внедрять только в рамках более широкой иерархии управления отходами в области предотвращения, подготовки к повторному использованию, рециркуляции, рекуперации и утилизации. Для этого требуется, чтобы муниципальные органы власти осуществляли комплексное планирование управления отходами в целях максимального использования потенциала повторного использования и переработки материалов до рекуперации энергии. Кроме того, необходима достаточная инфраструктура по сбору и разделению источников, с тем чтобы на мусоросжигательные заводы приходило топливо с подходящим содержанием энергии и влаги[3].

Существуют различные точки зрения на то, можно ли считать мусор возобновляемым источником энергии, а его сжигание — утилизацией. Значимую часть бытовых отходов составляет биомасса, образованная растениями, использующими атмосферный CO₂. Если эти же этот объём растений будет выращен вновь, то равное количество углерода будет вновь выведена из атмосферы. По этим соображениям в ряде стран сжигаемая органика рассматривается как источник возобновляемой энергии, в отличие от сжигаемых продуктов нефтехимии. В России Федеральный закон от 26 марта 2003 № 35-ФЗ «Об электроэнергетике» определяет, что к ВИЭ в том числе относятся «биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива, биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках». Таким образом, при отнесении к ВИЭ не учитывается класс опасности отходов и выбросы парниковых газов[4].

Распространённость[править | править код]

В середине 2010-х в мире насчитывалось более 2200 W2E-заводов[5].

По оценкам Международного энергетического агентства в 2014 году по всему миру из ТКО было произведено более 30 млн т нефтяного эквивалента первичной энергии, что составляло около 0,2 % от её производства в целом. Однако доля ТКО в мировом энергетическом балансе в последние десятилетия стабильно расла. Так, в период с 1994 по 2014 годы производство энергии из ТКО увеличилось в 2,6 раза[4].

W2E-заводы характеризуются более высокими капитальными (в 9 раз выше по сравнению с новыми газовыми ТЭС) и эксплуатационными (в 20 раз выше по сравнению с новыми ТЭС) затратами. Для их финансирования и поддержки в разных странах применяются различные механизмы и комбинации межотраслевого и межтерриториального субсидирования утилизации отходов, а также за счёт промышленных и частных потребителей вырабатываемой электроэнергии. Методов стимулирования сжигания мусора для целей энергетики может быть достаточно много. В отдельных странах действуют «зелёные feed-in тарифы» на электроэнергию, производимую из биомассы (в том числе и муниципальных органических отходов); в некоторых стимулируют сжигание именно ТКО (например, Китай ввёл меры стимулирования на уровне провинций и городов). Другие государства применяют диверсифицированные тарифы на хранение мусора. Например, в Норвегии стимулируют сжигание биоразлагаемых отходов на ТЭС или котельных за счет различных тарифов для захоронения мусора: захоронение 1 т биоразлагаемого мусора на полигоне на 65 % дороже, чем других типов мусора[6].

В Европейском союзе энергетическая утилизация мусора рассматривается как часть мер по достижению целей, установленных Европейской комиссией в Директиве о захоронении отходов: к 2025 году на захоронение должно уходить не более 25 % ТКО и прекращено захоронение отходов, пригодных для повторного использования (включая пластмассы, бумагу, металлы, стекло и биоотходы)[7]. Европейская конфедерация W2E-заводов (CEWEP) в 2015 году в открытом письме к Еврокомиссии говорила, что энергетическая утилизация мусора может снизить зависимость от импорта природного газа из России (в 2012 году 28 стран Евросоюза импортировали 107 млрд м³, сжигание мусора на тот момент было эквивалентно 19 % этих поставок)[8]. Распространённость мусоросжигания значительно различается между странами, являясь очень высоким в ряде развитых стран (преимущественно в Северной и Западной Европе). По данным CEWEP за 2017 год, европейским лидером в мусоросжигании является Финляндия, отправляющая на энергетическую утилизацию 58 % мусора, следом идут Дания, Швеция и Норвегия с 53 %, а также Швейцария c 47 %. В Германии, Австрии, Франции и Италии этот показатель составляет около 20—40 %. Средний показатель по 28 странам ЕС составлял 28 %[9].

В России около 97 % ТБО отправляются на полигоны. «РТ-Инвест» планирует ввести в эксплуатацию до конца 2023 года 5 новых заводов установленной мощностью 325 МВт. В мае 2020 года консорциум «Ростеха», «Росатома» и ВЭБ.РФ в мае 2020 заявил о старте проекта по строительству ещё 25 заводов W2E-заводов для создания через 10 лет суммарной утилизации 18 млн тонн неперерабатываемых «хвостов» (15-20 % от массы ТБО)[10][11][12].

В США в 2017 году 12,7 % всех ТБО было сожжено с получением энергии, 52,1 % ТБО оказались на полигонах. В 2018 году 68 американских станций выработали около 14 млрд кВт·ч электроэнергии за счёт сжигания 29,5 млн тонн горючих ТБО. Около 90 % мощностей были построены в период с 1980 по 1995[13][14].

В странах Азии на фоне стремительной урбанизацией и ежегодного роста численности населения и количества ТБО правительства продвигают различные программы энергетической утилизации. Государственные цели Китая предполагают обработку в 2020-е половины ТБО на W2E-заводах. В 2018 году Международное энергетическое агентство прогнозировало, что к 2023 году установленная мощность китайских предприятий по энергетической утилизации отходов может достигнуть 13 ГВт, а к 2025 году заводы смогут обрабатывать 260 млн тонн ТБО. Поддержку предприятиям оказывают через предоставление кредитов по низким ставкам и льготное налогообложение. Развёртывание W2E-предприятий в Индии идёт медленно: чуть менее 300 МВт мощности было установлено в конце 2017 года, а крупнейшая в стране станция (24 МВт) была введена в эксплуатацию в Нью-Дели только в 2017 году. Одним из значимых факторов, мешающих развитию индустрии, является низкое качество мусора и его низкая теплотворная способность. В Таиланде в рамках Плана развития альтернативной энергетики поставлена долгосрочная цель — к 2036 году довести установленную мощность мусороперерабатывающих предприятий до 550 МВт. Пакистан, Вьетнам и Индонезия стимулируют создание новых предприятий через гарантированный тариф для электроэнергии[3].

Экологическая безопасность[править | править код]

Степень воздействия мусоросжигательных заводов на окружающую среду зависит в значительной мере от соблюдения правил сжигания ТКО, к которым относятся: сортировка отходов перед сжиганием, с удалением из них негорючих, а также подверженных гниению компонентов; поддержание необходимой температуры в печах в процессе сжигания; обязательная проверка золы на выщелачивание перед её захоронением; вторичное дожигание газов. При этом наличие определённого процента выбросов в атмосферу на мусоросжигательных заводах остаётся неизбежным[15][1][16].

W2E-заводы вызывают меньшее загрязнение воздуха, чем тепловые электростанции, работающие на угле, но большее, чем работающие на основе природного газа[17].

Углеродный след[править | править код]

При тепловой утилизации практически весь углерод, содержавшийся в мусоре, переходит в газообразную форму и попадает в атмосферу как двуокись углерода. При этом существуют проекты по сокращению выброса газа и общему сокращению углеродный след. В 2019 году в нидерландском Дёйвене углекислый газ с местного W2E-завода стали поставлять в тепличное хозяйство, что позволило сократить выбросы CO₂ на 15 %[18].

В том случае, если этот же объём мусора окажется на полигоне, в атмосферу попадёт не только часть углекислого газа, но и в результате анаэробного разложения органики выделится около 62 м³ метана. Метан является в 28 раз более активным парниковым газом, и в таком объёме обладает более чем вдвое большим парниковым эффектом, чем углекислый газ. В случае полигонов полумерой является частичное улавливание свалочного газа и его дожигание. Однако по некоторым оценкам, в США в 1999 году метан со свалок внёс на 32 % больший вклад в парниковый эффект, чем углекислый газ, выделившийся при сжигании мусора[17][3].

Примечания[править | править код]

  1. 1 2 3 Алексашина В. В. Экология города. Мусоросжигательные заводы // Academia. Архитектура и строительство. — 2014.
  2. 1 2 3 От костра до завода: Как появились первые мусоросжигательные заводы. Энергия из отходов (1 декабря 2017). Дата обращения 25 февраля 2020.
  3. 1 2 3 4 Will energy from waste become the key form of bioenergy in Asia?. Международное энергетическое агентство (10 января 2019). Дата обращения 25 февраля 2020.
  4. 1 2 «Энергетический бюллетень» (март 2016, выпуск №34): Трудности на пути восточного газового вектора. Аналитический центр при Правительстве РФ (март 2016). Дата обращения 25 февраля 2020.
  5. Inge Johansson, Mar Edo. International Perspectives of Energy from Waste – Challenges and Trends : [англ.] // Waste Management, Volume 8. — 2018. — Vol. 8. — P. 47–61.
  6. «Энергетический бюллетень» (май 2017, выпуск №48): Энергетическая утилизация твердых бытовых отходов. Аналитический центр при Правительстве РФ (май 2017). Дата обращения 25 февраля 2020.
  7. Waste. European Commission (7 августа 2019). Дата обращения 25 февраля 2020.
  8. Open letter: Triple win in the new Circular Economy Package. Confederation of European Waste-to-Energy Plants (19 октября 2015). Дата обращения 25 февраля 2020.
  9. Waste-to-Energy: Energising your waste. Confederation of European Waste-to-Energy Plants (2018). Дата обращения 25 февраля 2020.
  10. ВЭБ выдаст кредит на строительство мусоросжигающих заводов в Подмосковье. РБК (6 февраля 2020). Дата обращения 25 февраля 2020.
  11. Глава «РТ-Инвест» заявил о плане построить 30 мусорных заводов в России. РБК (10 февраля 2020). Дата обращения 25 февраля 2020.
  12. [https://www.rbc.ru/business/14/05/2020/5ebc277b9a794720152b567b «Ростех» с ВЭБом построят 25 новых мусорных заводов за ₽600 млрд Они появятся в районах туристических центров и агломераций author= Тимофей Дзядко, Людмила Подобедова]. РБК (14 мая 2020). Дата обращения 15 июня 2020.
  13. Biomass explained Waste-to-energy (Municipal Solid Waste). U.S. Energy Information Administration (6 февраля 2020). Дата обращения 25 февраля 2020.
  14. Waste-to-energy electricity generation concentrated in Florida and Northeast. U.S. Energy Information Administration (8 апреля 2016). Дата обращения 25 февраля 2020.
  15. Венгерский А. Д., Бугаёв В. В. Технология сжигания твердых бытовых отходов // III международная научная конференция «Технические науки: традиции и инновации». — 2018.
  16. Мубаракшина Ф. Д., Гусева А. А. Современные проблемы и технологии переработки мусора в России и за рубежом // Известия Казанского государственного архитектурно-строительного университета. — 2011.
  17. 1 2 Nickolas J. Themelis. An overview of the global waste-to-energy industry. Waste Management World 2003 (5 ноября 2019). Дата обращения 25 февраля 2020.
  18. Ben Messenger. Greenhouse Helps Dutch Waste to Energy Facility Cut CO2 Emissions by 15%. International Solid Waste Association (5 ноября 2019). Дата обращения 25 февраля 2020.