Метан

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Метан
Methane-CRC-MW-dimensions-2D.png
Метан
Общие
Хим. формула CH₄
Рац. формула CH4
Физические свойства
Молярная масса 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³; 0,6682 кг/м³ в стандартных условиях по ГОСТ 2939—63;
жидкость (−164,6 °C) 415 кг/м³[1]
Термические свойства
Т. плав. -182,49 °C
Т. кип. -161,58 °C
Т. свспл. 537,8 °C
Пр. взрв. 4,4-17,0 %
Энтальпия образования −74 520 Дж/моль[3]
Энтальпия сгорания −890,3 кДж/моль[4]
Химические свойства
Растворимость в воде 0,02 г/кг[2]
Классификация
Рег. номер CAS 74-82-8
PubChem
Рег. номер EINECS 200-812-7
SMILES
InChI
RTECS PA1490000
ChEBI 16183
Номер ООН 1971
ChemSpider
Безопасность
Токсичность
NFPA 704.svg
Hazard F.svg
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Мета́н (лат. methanum), CH4[5] — простейший по составу предельный углеводород, при нормальных условиях бесцветный газ без вкуса и запаха[6].

Малорастворим в воде, почти в два раза легче воздуха.

Метан малотоксичен, но обладает слабым наркотическим действием (ПДК 7000 мг/м3)[7]. Имеются данные, что метан при хроническом воздействии малых концентраций в воздухе неблагоприятно влияет на центральную нервную систему[8]. Токсическое действие метана ослабляется его малой растворимостью в воде и крови и химической инертностью. Класс опасности — четвёртый[9].

При использовании в быту в метан (природный газ) обычно добавляют одоранты (обычно тиолы) - летучие вещества со специфическим «запахом газа», чтобы человек вовремя заметил аварийную утечку газа по запаху. На промышленных производствах утечки фиксируют датчики и во многих случаях метан для лабораторий и промышленных производств поставляется без добавления одорантов.

Накапливаясь в закрытом помещении в смеси с воздухом метан становится взрывоопасен при концентрации его от 4,4 % до 17 %[10]. Наиболее взрывоопасная концентрация в смеси с воздухом 9,5 об.%.

Метан — третий по значимости парниковый газ в атмосфере Земли (после водяного пара и углекислого газа, его вклад в парниковый эффект оценивается 4—9 %)[11][12].

История[править | править код]

В ноябре 1776 года итальянский физик Алессандро Вольта обнаружил метан в болотах озера Лаго-Маджоре на границе Италии и Швейцарии. На изучение болотного газа его вдохновила статья Бенджамина Франклина о «горючем воздухе». Вольта собирал газ, выделяемый со дна болота, и в 1778 году выделил чистый метан. Также он продемонстрировал зажигание газа от электрической искры.

Сэр Гемфри Дэви в 1813 г. изучал рудничный газ и показал, что он является смесью метана с небольшими количествами азота N2 и углекислого газа CO2 — то есть, что он качественно тождествен по составу болотному газу.

Современное название «метан» в 1866 г. газу дал немецкий химик Август Вильгельм фон Гофман[13][14] и происходит от слова «метанол»[стиль].

Нахождение в природе[править | править код]

Основной компонент природного газа (77—99 %), попутных нефтяных газов (31—90 %), рудничного и болотного газов (отсюда произошли другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, кишечнике жвачных животных) образуется биогенно в результате жизнедеятельности некоторых микроорганизмов.

Большие запасы метана сосредоточены в метаногидратах на дне морей и в зоне вечной мерзлоты[11][12].

Метан также был обнаружен на других планетах, включая Марс, что имеет значение для исследований в области астробиологии[15]. По современным данным, в атмосферах планет-гигантов солнечной системы в заметных концентрациях содержится метан[16].

Предположительно, на поверхности Титана в условиях низких температур (−180 °C) существуют целые озёра и реки из жидкой метано-этановой смеси[17]. Велика доля метановых льдов и на поверхности Седны.

В промышленности[править | править код]

Образуется при коксовании каменного угля, гидрировании угля, гидрогенолизе углеводородов в реакциях каталитического риформинга.

Классификация по происхождению[править | править код]

  • абиогенный — образован в результате химических реакций неорганических соединений, например, при взаимодействии карбидов металлов с водой;
  • биогенный — образован как результат химических превращений органических веществ;
  • бактериальный (микробный) — образован в результате жизнедеятельности бактерий (микроорганизмов);
  • термогенный — образован в ходе термохимических процессов.

Получение[править | править код]

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и кальция) или безводного гидроксида натрия с ледяной уксусной кислотой.

Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Возможно получение метана сплавлением ацетата натрия с гидроксидом натрия[18]:

Также для лабораторного получения метана используют гидролиз карбида алюминия или некоторых металлорганических соединений (например, метилмагнийбромида).

Также возможно биологическое получение метана, см. Биогаз.

Химические свойства[править | править код]

Метан — первый член гомологического ряда насыщенных углеводородов (алканов), наиболее устойчив к химическим воздействиям. Подобно другим алканам вступает в реакции радикального замещения — галогенирования, сульфохлорирования, сульфоокисления, нитрования и других, но обладает меньшей реакционной способностью по сравнению с другими алканами.

Для метана специфична реакция с парами воды, в которой в промышленности применяется в качестве катализатора никель, нанесённый на оксиде алюминия (Ni/Al2O3) при 800—900 °C или без катализатора при 1400—1600 °C. Образующийся в результате реакции синтез-газ может быть использован для последующих синтезов метанола, углеводородов, уксусной кислоты, ацетальдегида и других продуктов.

Горит в воздухе голубоватым пламенем, при этом выделяется энергия около 33,066 МДж на 1 м³, взятый при нормальных условиях. Реакция горения метана в кислороде или воздухе:

.

При комнатной температуре и стандартном давлении метан является бесцветным газом без запаха[19]. Знакомый запах природного газа, который используется дома, обычно достигается добавлением смесио доранта, содержащей трет-бутилтиол, в качестве меры безопасности. Метан имеет температуру кипения −164 ° C при давлении в одну атмосферу[20]. Как газ, он легко воспламеняется при объёмных концентрациях в воздухе от 4,4 % до 17 % при стандартном давлении.

Твердый метан существует в нескольких модификациях. В настоящее время известно девять[21].

Вступает с галогенами в реакции замещения, которые проходят по свободно-радикальному механизму:

,
,
,
.

Выше 1400 °C разлагается по реакции:

.

Окисляется до муравьиной кислоты при 150—200 °C и давлении 30—90 атм. по цепному радикальному механизму:

.

Соединения включения[править | править код]

Метан образует соединения включения — газовые гидраты, широко распространённые в природе.

Применение метана[править | править код]

Метан используется в качестве топлива для печей, водонагревателей, автомобилей[22][23], турбин и др. Для хранения метана используется активированный уголь. Жидкий метан в сочетании с жидким кислородом также используется в качестве ракетного топлива, например в двигателях BE-4 и Raptor[24].

Как основной компонент природного газа, метан важен для производства электроэнергии, сжигая его в качестве топлива в газовой турбине или парогенераторе. По сравнению с другими видами углеводородного топлива метан производит меньше углекислого газа на каждую единицу выделенного тепла. При температуре около 891 кДж/моль теплота сгорания метана ниже, чем у любого другого углеводорода. Тем не менее, он производит больше тепла на массу (55,7 кДж/г), чем любая другая органическая молекула из-за его относительно большого содержания водорода, что составляет 55 % теплоты сгорания[25], но отдаёт только 25 % молекулярной массы метана. Во многих городах метан подается в дома для отопления и приготовления пищи. В этом контексте его обычно называют природным газом, содержание энергии в котором составляет 39 мегаджоулей на кубический метр. Сжиженный природный газ (СПГ) представляет собой преимущественно метан (CH4), превращаемый в жидкую форму для удобства хранения или транспортировки.

Рафинированный жидкий метан используется в качестве ракетного топлива[26]. Метан, как сообщается, имеет преимущество перед керосином в том, что он наносит меньше углерода на внутренние части ракетных двигателей, что уменьшает сложность повторного использования ускорителей.

Метан используется в качестве сырья в органическом синтезе, в том числе для изготовления метанола.

Физиологическое действие[править | править код]

Метан является самым физиологически безвредным газом в гомологическом ряду парафиновых углеводородов. Физиологическое действие метан не оказывает и неядовит (из-за малой растворимости метана в воде и плазме крови и присущей парафинам химической инертности). Погибнуть человеку в воздухе с высокой концентрацией метана можно только от недостатка кислорода в воздухе. Так, при содержании в воздухе 25—30 % метана появляются первые признаки удушья (учащение пульса, увеличение объёма дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека кислородное голодание — головную боль, одышку, — симптомы, характерные для горной болезни.

Так как метан легче воздуха, он не скапливается в проветриваемых подземных сооружениях. Поэтому случаи гибели людей от удушья при вдыхания смеси метана с воздухом весьма редки.

Первая помощь при тяжелом удушье: удаление пострадавшего из вредной атмосферы. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание изо рта в рот. При отсутствии пульса — непрямой массаж сердца.

Хроническое действие метана[править | править код]

У людей, работающих в шахтах или на производствах, где в воздухе присутствуют в незначительных количествах метан и другие газообразные парафиновые углеводороды, описаны заметные сдвиги со стороны вегетативной нервной системы (положительный глазосердечный рефлекс, резко выраженная атропиновая проба, гипотония) из-за очень слабого наркотического действия этих веществ, сходного с наркотическим действием диэтилового эфира.

ПДК метана в воздухе рабочей зоны составляет 7000 мг/м³[7].

Биологическая роль[править | править код]

Показано, что эндогенный метан способен вырабатываться не только метаногенной микрофлорой кишечника, но и клетками эукариот, и что его образование значительно возрастает при экспериментальном вызывании клеточной гипоксии, например, при нарушении работы митохондрий при помощи отравления организма экспериментального животного азидом натрия, известным митохондриальным ядом. Высказывается предположение, что образование метана клетками эукариот, в частности животных, может быть внутриклеточным или межклеточным сигналом испытываемой клетками гипоксии[27].

Также показано увеличение образования метана клетками животных и растений под влиянием различных стрессовых факторов, например, бактериальной эндотоксемии или её имитации введением бактериального липополисахарида, хотя, возможно, этот эффект наблюдается не у всех видов животных (в эксперименте исследователи получили его у мышей, но не получили у крыс)[28]. Возможно, что образование метана клетками животных в подобных стрессовых условиях играет роль одного из стрессовых сигналов.

Предполагается также, что метан, выделяемый кишечной микрофлорой человека и не усваиваемый организмом человека (он не метаболизируется и частично удаляется вместе с кишечными газами, частично всасывается и удаляется при дыхании через лёгкие), не является «нейтральным» побочным продуктом метаболизма бактерий, а принимает участие в регуляции перистальтики кишечника, а его избыток может вызывать не только вздутие живота, отрыжку, повышенное газообразование и боли в животе, но и функциональные запоры[29].

Метан и экология[править | править код]

Является парниковым газом, более сильным в этом отношении, чем углекислый газ, из-за наличия глубоких вращательных полос поглощения его молекул в инфракрасном спектре. Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность того же молярного объёма метана составит 21-25 единиц[30][31].

С 1750 года концентрация метана в атмосфере Земли увеличилась примерно на 150 %, и на её долю приходится 20 % от общего радиационного воздействия всех долгоживущих и глобально смешанных парниковых газов[32].

Примечания[править | править код]

  1. Справочник химика / Редкол.: Никольский Б. П. и др.. — 3-е изд., испр. — Л.: Химия, 1971. — Т. 2. — 1168 с.
  2. Обзор: Растворимость некоторых газов в воде
  3. Smith J. M., H.C. Van Ness, M.M. Abbott Introduction to Chemical Engineering Thermodynamics // J. Chem. Educ.American Chemical Society, 1950. — Vol. 27, Iss. 10. — P. 789. — ISSN 0021-9584; 1938-1328doi:10.1021/ED027P584.3
  4. https://sites.google.com/site/ellesmerealevelchemistry/module-3-periodic-table-energy/3-2-physical-chemistry-1/3-2-1-enthalpy-changes/3-2-1-d-enthalpy-change-definitions
  5. Львов М. Д. Болотный газ или метан // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  6. Статья «Метан» на сайте «Химик»
  7. 1 2 Гигиенические нормативы ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны»
  8. Куценко С. А. Основы токсикологии / С. А. Куценко. — СПб.: Фолиант, 2004.
  9. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, н-бутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003)
  10. ГОСТ Р 52136-2003
  11. 1 2 Наталья Ржевская Тепло мерзлоты // В мире науки. — 2016. — № 12. — С. 67—73.
  12. 1 2 Леонид Юрганов. Метан над Арктикой (рус.) // Наука и жизнь. — 2017. — № 11. — С. 24.
  13. A. W. Hofmann (1866) "On the action of trichloride of phosphorus on the salts of the aromatic monoamines, " Proceedings of the Royal Society of London, 15 : 55—62; see footnote on pp. 57—58.
  14. James Michael McBride (1999) «Development of systematic names for the simple alkanes». Available online at Chemistry Department, Yale University (New Haven, Connecticut). Архивная копия от 16 марта 2012 на Wayback Machine
  15. Etiope, Giuseppe; Lollar, Barbara Sherwood. Abiotic Methane on Earth (англ.) // Reviews of Geophysics (англ.) : journal. — 2013. — Vol. 51, no. 2. — P. 276—299. — ISSN 1944-9208. — DOI:10.1002/rog.20011. — Bibcode2013RvGeo..51..276E.
  16. Atreya, S.K.; Mahaffy, P.R.; Niemann, H.B. et al. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets (англ.) // Planetary and Space Sciences (англ.) : journal. — 2003. — Vol. 51. — P. 105—112. — DOI:10.1016/S0032-0633(02)00144-7.
  17. Tidal effects of disconnected hydrocarbon seas on Titan
  18. Б. А. Павлов, А. П. Терентьев. Курс органической химии. — Издание шестое, стереотипное. — M.: Химия, 1967. — С. 58.
  19. Handbook of transport and the environment. — Emerald Group Publishing, 2003. — P. 168. — ISBN 978-0-08-044103-0.
  20. Methane Phase change data // NIST Chemistry Webbook.
  21. Bini, R.; Pratesi, G. High-pressure infrared study of solid methane: Phase diagram up to 30 GPa (англ.) // Physical Review B : journal. — 1997. — Vol. 55, no. 22. — P. 14800—14809. — DOI:10.1103/physrevb.55.14800. — Bibcode1997PhRvB..5514800B.
  22. Lumber Company Locates Kilns at Landfill to Use Methane – Energy Manager Today (англ.)  (неопр.) ?. Energy Manager Today. Дата обращения 11 марта 2016.
  23. Cornell, Clayton B.. Natural Gas Cars: CNG Fuel Almost Free in Some Parts of the Country (29 апреля 2008). «Compressed natural gas is touted as the 'cleanest burning' alternative fuel available, since the simplicity of the methane molecule reduces tailpipe emissions of different pollutants by 35 to 97%. Not quite as dramatic is the reduction in net greenhouse-gas emissions, which is about the same as corn-grain ethanol at about a 20% reduction over gasoline».
  24. Blue Origin BE-4 Engine (англ.)  (неопр.) ?. — «We chose LNG because it is highly efficient, low cost and widely available. Unlike kerosene, LNG can be used to self-pressurize its tank. Known as autogenous repressurization, this eliminates the need for costly and complex systems that draw on Earth’s scarce helium reserves. LNG also possesses clean combustion characteristics even at low throttle, simplifying engine reuse compared to kerosene fuels.». Дата обращения 14 июня 2019.
  25. Schmidt-Rohr, Klaus. Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2 (англ.) // Journal of Chemical Education (англ.) : journal. — 2015. — Vol. 92, no. 12. — P. 2094—2099. — DOI:10.1021/acs.jchemed.5b00333. — Bibcode2015JChEd..92.2094S.
  26. Thunnissen, Daniel P.; Guernsey, C. S.; Baker, R. S.; Miyake, R. N. Advanced Space Storable Propellants for Outer Planet Exploration (англ.) // American Institute of Aeronautics and Astronautics : journal. — 2004. — No. 4—0799. — P. 28.
  27. Tuboly E. et al. Methane biogenesis during sodium azide-induced chemical hypoxia in rats (англ.) // American Physiological Society (англ.). — 15 January 2013. — Vol. 304, no. 2. — P. 207—214. — DOI:10.1152/ajpcell.00300.2012. — PMID 23174561.
  28. Tuboly E, Szabó A, Erős G, Mohácsi A, Szabó G, Tengölics R, Rákhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy. // J Breath Res.. — Dec 2013. — Т. 7, вып. 7(4), № 4. — DOI:10.1088/1752-7155/7/4/046004. — PMID 24185326.
  29. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. // Dig Dis Sci. — Aug 2010. — Т. 55, вып. 55(8), № 8. — С. 2135—2143. — DOI:10.1007/s10620-009-1012-0. — PMID 19830557.
  30. EBRD Methodology for Assessment of Greenhouse Gas Emissions, Version 7, 6 July 2010 Архивная копия от 13 мая 2015 на Wayback Machine (англ.)
  31. Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation (ed. J. van Ham, Springer 2000, ISBN 978-0-7923-6199-2): 4. Impact of methane on climate, page 30 «On a molar basis, an additional mole of methane in the current atmosphere is about 24 times more effective at absorbing infrared radiation and affecting climate than an additional mole of carbon dioxide (WMO, 1999)»
  32. Technical summary. Climate Change 2001. United Nations Environment Programme. Архивировано 4 июня 2011 года.

Литература[править | править код]

Ссылки[править | править код]