Гиперкомпактная звёздная система
Гиперкомпактная звёздная система (англ. hypercompact stellar system, HCSS) — плотное звёздное скопление вокруг сверхмассивной чёрной дыры (СМЧД), выброшенной из центра галактики. Звёзды, находящиеся близко к чёрной дыре во время её выбрасывания из галактики, продолжают оставаться гравитационно связанными с чёрной дырой, образуя гиперкомпактную звёздную систему.
Термин "гиперкомпактная" означает, что такие системы являются малыми по размеру по сравнению с обычными звёздными скоплениями такой же светимости, поскольку сила притяжения сверхмассивной чёрной дыры заставляет звёзды двигаться по очень близким орбитам вокруг центра скопления.
Первым кандидатом в гиперкомпактные звёздные системы является яркий рентгеновский источник SDSS 1113 вблизи галактики Маркарян 177. Обнаружение подобных систем подтвердит возможность существования сверхмассивных чёрных дыр за пределами галактик.
Свойства
[править | править код]Астрономы считают, что сверхмассивные чёрные дыры могут быть выброшены из центра галактик вследствие воздействия гравитационных волн: при слиянии двух сверхмассивных чёрных дыр потеря энергии происходит при излучении гравитационных волн; поскольку излучение гравитационных волн происходит не изотропно, то некоторый момент передаётся слившимся чёрным дырам. Компьютерное моделирование подтвердило, что СМЧД могут в результате данного процесса приобретать скорости до 105 км/с,[1] что превышает скорость убегания из центра даже самых массивных галактик.[2]
Звёзды, вращающиеся вокруг СМЧД в момент приобретения ей импульса, будут также испытывать приращение скорости, при этом их орбитальная скорость будет превышать соответствующую импульсу скорость Vk. Размеры скопления определяются так: радиус соответствует радиусу орбиты, на которой скорость равна скорости Vk,
где M — масса чёрной дыры, G — гравитационная постоянная. Радиус R равен примерно половине парсека для Vk около 1000 км/с и массы СМЧД 100 млн масс Солнца. Наиболее крупные гиперкомпактные системы должны обладать размерами около 20 пк; примерно таким же размером обладают крупные шаровые скопления; наименее крупные должны обладать размерами около тысячной доли парсека, заметно меньше любого обычного скопления звёзд.[3]
Количество звёзд, которые остаются связанными с СМЧД после приобретения ей импульса, зависит как от Vk, так и от того, насколько плотно звёзды располагались относительно СМЧД. Существует ряд аргументов в пользу утверждения о том, что полная звёздная масса должна составлять около 0,1% от массы СМЧД или менее.[3] Наиболее крупные гиперкомпактные системы могут содержать несколько миллионов звёзд, при этом по светимости такие системы будут сопоставимы с шаровыми скоплениями или с ультракомпактными карликовыми галактиками.
Помимо особой компактности, главным отличием между гиперкомпактной системой и обычным звёздным скоплением является существенно большая масса вследствие наличия СМЧД в центре. СМЧД сама по себе тёмная и недоступная для обнаружения, но её гравитационное воздействие приводит к тому, что звёзды движутся с гораздо большими скоростями по сравнению со звёздами в обычных скоплениях: сотни и тысячи км/с вместо нескольких км/с.
Если скорость выброса была меньше скорости убегания в галактике, то СМЧД снова вернётся к центральной области галактики, такие колебания будут многократно повторяться.[4] В таком случае гиперкомпактная звёздная система будет существовать как отдельный объект сравнительно малое время, несколько сотен миллионов лет.
Даже если система удалится из галактики, она останется связанной с группой или скоплением галактик, поскольку скорость убегания из скопления галактик значительно выше, чем из отдельной галактики. При наблюдении гиперкомпактная система будет двигаться с меньшей чем Vk скоростью вследствие преодолевания гравитационного воздействия галактики и/или скопления галактик.
Звёзды в гиперкомпактной звёздной системе будут близки по типу к звёздам в ядрах галактик. Таким образом, звёзды в гиперкомпактных системах более богаты металлами и более молодые, чем звёзды в типичном шаровом скоплении.[3]
Поиск
[править | править код]Поскольку чёрная дыра в центре гиперкомпактной системы по сути своей невидима, то система будет напоминать по виду тусклое скопление звёзд. Определение того, является ли скопление гиперкомпактной системой, требует измерения орбитальных скоростей звёзд в скоплении по эффекту Доплера и доказательства более быстрого движения звёзд по сравнению со звёздами в обычных скоплениях. Данные наблюдения сложны, поскольку гиперкомпактные системы должны быть тусклыми, при этом потребуются длительные экспозиции даже для 10-метровых телескопов.
С наибольшей вероятностью обнаружить такие системы можно будет в скоплениях галактик, поскольку, во-первых, большинство галактик в скоплении являются эллиптическими, они, вероятно, сформировались при слиянии галактик. Слияние галактик позволяет сформироваться двойной СМЧД. Во-вторых, скорость убегания из скопления галактик достаточно велика, чтобы удержать гиперкомпактную систему внутри скопления, даже если она преодолела притяжение своей галактики.
По оценкам ближайшие скопления галактик Печи и Девы могут содержать сотни или тысячи подобных систем.[3] Такие скопления галактик исследовались на предмет наличия компактных галактик и звёздных скоплений. Возможно, некоторые из выявленных в рамках обзоров объекты являются гиперкомпактными системами. У некоторых из компактных объектов обнаружены высокие внутренние скорости, но всё же массы объектов недостаточны для отнесения их к гиперкомпактным системам.[5]
Другим вероятным местом обнаружения гиперкомпактных систем являются области около остатков недавнего слияния галактик.
Время от времени чёрная дыра в центре гиперкомпактной системы может разрушать звёзды, проходящие к ней слишком близко, создавая яркую вспышку. Несколько таких вспышек наблюдалось в центральных областях галактик, причиной вспышек могло стать слишком близкое прохождение звёзд вблизи СМЧД в ядрах галактик.[6] По оценкам выброшенная из галактики СМЧД может разрушить около десятка звёзд за то время, которое ей требуется для покидания галактики.[7] Поскольку время существования вспышки составляет несколько месяцев, шансы увидеть такое явление невелики несмотря на большой объём исследуемого пространства. Также звезда в гиперкомпактной системе может взорваться как сверхновая первого типа.[7]
Важность обнаружения
[править | править код]Открытие гиперкомпактных звёздных систем важно по нескольким причинам.
- Оно создаст доказательство возможности существования сверхмассивных чёрных дыр за пределами галактик.
- Оно подтвердит результаты компьютерного моделирования, предсказывающего создание гравитационными волнами импульса до тысяч км/с.
- Существование гиперкомпактных систем приводит к выводу о том, что некоторые галактики не имеют СМЧД в центрах. Такой вывод особенно важен для теорий, связывающих рост галактик с ростом СМЧД в центрах, и для эмпирических соотношений между массой СМЧД и свойствами галактик.
- Если будет обнаружено много таких систем, то было бы возможным получение распределения передаваемых СМЧД скоростей, которое содержало бы информацию о истории слияния галактик, массах и спинах двойных чёрных дыр.
Примечания
[править | править код]- ↑ Healy, J.; Herrmann, F.; Shoemaker, D. M.; Laguna, P.; Matzner, R. A.; Matzner, Richard (2009), "Superkicks in Hyperbolic Encounters of Binary Black Holes", Physical Review Letters, 102 (4): 041101—041105, arXiv:0807.3292, Bibcode:2009PhRvL.102d1101H, doi:10.1103/PhysRevLett.102.041101, PMID 19257409
- ↑ Merritt, D.; Milosavljevic, M.; Favata, M.; Hughes, S. A.; Holz, D. E. (2004), "Consequences of Gravitational Radiation Recoil", The Astrophysical Journal, 607 (1): L9—L12, arXiv:astro-ph/0402057, Bibcode:2004ApJ...607L...9M, doi:10.1086/421551
- ↑ 1 2 3 4 Merritt, D.; Schnittman, J. D.; Komossa, S. (2009), "Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes", The Astrophysical Journal, 699 (2): 1690—1710, arXiv:0809.5046, Bibcode:2009ApJ...699.1690M, doi:10.1088/0004-637X/699/2/1690
- ↑ Gualandris, A.; Merritt, D. (2008), "Ejection of Supermassive Black Holes from Galaxy Cores", The Astrophysical Journal, 678 (2): 780—796, arXiv:0708.0771, Bibcode:2008ApJ...678..780G, doi:10.1086/586877
- ↑ Mieske, S.; Hilker, M.; Jordán, A.; Infante, L.; Kissler-Patig, M.; Rejkuba, M.; Richtler, T.; Côté, P.; et al. (2008), "The nature of UCDs: Internal dynamics from an expanded sample and homogeneous database", Astronomy and Astrophysics, 487 (3): 921—935, arXiv:0806.0374, Bibcode:2008A&A...487..921M, doi:10.1051/0004-6361:200810077
{{citation}}
: Явное указание et al. в:|first1=
(справка) - ↑ Komossa, S. (2004), The Extremes of (X-ray) Variability Among Galaxies: Flares from Stars Tidally Disrupted by Supermassive Black Holes, pp. 45—48, Архивировано 3 марта 2016, Дата обращения: 1 января 2018
{{citation}}
: Неизвестный параметр|book-title=
игнорируется (справка) Источник . Дата обращения: 1 января 2018. Архивировано 3 марта 2016 года. - ↑ 1 2 Komossa, S.; Merritt, D. (2009), "Tidal Disruption Flares from Recoiling Supermassive Black Holes", The Astrophysical Journal, 683 (1): L21—L24, arXiv:0807.0223, Bibcode:2008ApJ...683L..21K, doi:10.1086/591420
Ссылки
[править | править код]- New Type of Cosmic Object to Be Revealed? статья в National Geographic News.
- Mangled Stars Could Reveal Ejected Black Holes статья в New Scientist о приливном разрушении звёзд и вспышках.