Гравитационный радиус

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Гравитацио́нный ра́диус (или ра́диус Шва́рцшильда) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы в яркостных координатах, на которой находился бы горизонт событий, создаваемый этой массой (с точки зрения ОТО), если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась, но радиальные движения допустимы), и целиком лежала бы внутри этой сферы.

Гравитационный радиус пропорционален массе тела m и равен r_g = 2Gm/c^2, где G — гравитационная постоянная, с — скорость света в вакууме. Это выражение можно записать как r_g \approx m1,\!48 \times 10^{-27}, где r_g измеряется в метрах, а m — в килограммах. Для астрофизиков удобной является запись r_g \approx 2,\!95 (m / M_\odot) км, где M_\odot — масса Солнца.

При переходе к планковскому масштабу \ell_P=\sqrt{(G/c^3)\,\hbar}\approx 10^{-35} м, удобной является запись в форме r_g = 2\,(G/c^3)\,m\,c.

По величине гравитационный радиус совпадает с радиусом сферически-симметричного тела, для которого в классической механике вторая космическая скорость на поверхности была бы равна скорости света. На важность этой величины впервые обратил внимание Джон Мичелл в своём письме к Генри Кавендишу, опубликованном в 1784 году. В рамках общей теории относительности гравитационный радиус (в других координатах) впервые вычислил в 1916 году Карл Шварцшильд (см. метрика Шварцшильда).

Гравитационный радиус обычных астрофизических объектов ничтожно мал по сравнению с их действительным размером: так, для Земли r_g = 0,884 см, для Солнца r_g = 2,95 км. Исключение составляют нейтронные звёзды и гипотетические бозонные и кварковые звёзды. Например, для типичной нейтронной звезды радиус Шварцшильда составляет около 1/3 от её собственного радиуса. Это обусловливает важность эффектов общей теории относительности при изучении таких объектов.

С достаточно массивными звёздами (как показывает расчёт, с массой больше двух—трёх солнечных масс) в конце их эволюции может происходить процесс, называемый релятивистским гравитационным коллапсом: если, исчерпав ядерное «горючее», звезда не взрывается и не теряет массу, то, испытывая релятивистский гравитационный коллапс, она может сжаться до размеров гравитационного радиуса. При гравитационном коллапсе звезды до сферы r_gнаружу не может выходить никакое излучение, никакие частицы. С точки зрения внешнего наблюдателя, находящегося далеко от звезды, с приближением размеров звезды к r_g собственное время частиц звезды неограниченно замедляет темп своего течения. Поэтому для такого наблюдателя радиус коллапсирующей звезды приближается к гравитационному радиусу асимптотически, никогда не становясь равным ему.

Физическое тело, испытавшее гравитационный коллапс и достигшее гравитационного радиуса, называется чёрной дырой. Сфера радиуса rg совпадает с горизонтом событий невращающейся чёрной дыры. Для вращающейся чёрной дыры горизонт событий имеет форму эллипсоида, и гравитационный радиус даёт оценку его размеров. Радиус Шварцшильда для сверхмассивной черной дыры в центре Галактики равен примерно 16 миллионам километров[1]. Радиус Шварцшильда всей нашей Вселенной значительно превосходит радиус наблюдаемой ее части[2].

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977. — Т. 1—3.
  • Шапиро С.Л., Тьюколски С.А. Черные дыры, белые карлики и нейтронные звезды / Пер. с англ. под ред. Я. А. Смородинского. — М.: Мир, 1985. — Т. 1—2. — 656 с.

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]