Иммунотерапия рака: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Метка: редактор вики-текста 2017
Строка 99: Строка 99:
| [[PD-L1]]
| [[PD-L1]]
| 2016
| 2016
| рак мочевого пузыря<ref name="FDA-BC-2016">{{cite news|url=https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm501762.htm|title=FDA approves new, targeted treatment for bladder cancer|date=18 May 2016|publisher=FDA|access-date=20 May 2016}}</ref>
| рак мочевого пузыря
|-
|-
|Авелумаб
|Авелумаб
Строка 154: Строка 154:
|PD-L1
|PD-L1
|2017
|2017
|рак мочевого пузыря<ref>{{Cite web| title = Approved Drugs – Durvalumab (Imfinzi) |url=https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm555930.htm|last=Research|first=Center for Drug Evaluation and|website=fda.gov|access-date=6 May 2017}}</ref> non-small cell lung cancer<ref>{{Cite journal|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm597248.htm|title=FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC|journal=FDA|date=9 February 2019}}</ref>
|рак мочевого пузыря,<ref>{{Cite web| title = Approved Drugs – Durvalumab (Imfinzi) |url=https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm555930.htm|last=Research|first=Center for Drug Evaluation and|website=fda.gov|access-date=6 May 2017}}</ref>немелкоклеточный рак легких<ref>{{Cite journal|url=https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm597248.htm|title=FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC|journal=FDA|date=9 February 2019}}</ref>
|-
|-
|}
|}
Строка 192: Строка 192:


===Интерферон===
===Интерферон===
[[Интерферон]]ы вырабатываются иммунной системой. Они обычно участвуют в противовирусной реакции, но также имеют применение при раке. Они делятся на три группы: [[интерферон тип I| тип I]] (IFNα и IFNβ), [[интерферон тип II|тип II]] (IFNγ) и [[интерферон тип III|тип III]] (IFNλ). IFNα был одобрен для использования при волосатоклеточном лейкозе, связанной со СПИДом саркоме Капоши, фолликулярной лимфоме, хроническом миелоидном лейкозе и меланоме. Тип I и II IFN были широко исследованы, и хотя оба типа способствуют противоопухолевым эффектам иммунной системы, клинически эффективными оказались только IFNI типа I. IFNa ИФН I и II типов. IFNλ хорошо проявил себя в качестве к анти -- тумора на животных моделях..<ref>{{cite journal | vauthors = Dunn GP, Koebel CM, Schreiber RD | title = Interferons, immunity and cancer immunoediting | journal = Nature Reviews. Immunology | volume = 6 | issue = 11 | pages = 836–48 | date = November 2006 | pmid = 17063185 | doi = 10.1038/nri1961 }}</ref><ref>{{cite journal | vauthors = Lasfar A, Abushahba W, Balan M, Cohen-Solal KA | title = Interferon lambda: a new sword in cancer immunotherapy | journal = Clinical & Developmental Immunology | volume = 2011 | pages = 349575 | year = 2011 | pmid = 22190970 | pmc = 3235441 | doi = 10.1155/2011/349575 }}</ref>
[[Интерферон]]ы вырабатываются иммунной системой. Они обычно участвуют в противовирусной реакции, но также имеют применение при раке. Они делятся на три группы: [[интерферон тип I| тип I]] (IFNα и IFNβ), [[интерферон тип II|тип II]] (IFNγ) и [[интерферон тип III|тип III]] (IFNλ). IFNα был одобрен для использования при волосатоклеточном лейкозе, связанной со СПИДом саркоме Капоши, фолликулярной лимфоме, хроническом миелоидном лейкозе и меланоме. Тип I и II IFN были широко исследованы, и хотя оба типа способствуют противоопухолевым эффектам иммунной системы, клинически эффективными оказались только IFNI типа I. IFNa ИФН I и II типов. IFNλ хорошо проявил себя в качестве к анти -- тумора на животных моделях.<ref>{{cite journal | vauthors = Dunn GP, Koebel CM, Schreiber RD | title = Interferons, immunity and cancer immunoediting | journal = Nature Reviews. Immunology | volume = 6 | issue = 11 | pages = 836–48 | date = November 2006 | pmid = 17063185 | doi = 10.1038/nri1961 }}</ref><ref>{{cite journal | vauthors = Lasfar A, Abushahba W, Balan M, Cohen-Solal KA | title = Interferon lambda: a new sword in cancer immunotherapy | journal = Clinical & Developmental Immunology | volume = 2011 | pages = 349575 | year = 2011 | pmid = 22190970 | pmc = 3235441 | doi = 10.1155/2011/349575 }}</ref>
В отличие от IFN I типа, [[интерферон гамма]] еще не одобрен для лечения любого рака. Однако улучшение выживаемости наблюдалось при введении интерферона гамма пациентам с раком мочевого пузыря и меланомой. Наиболее многообещающий результат был достигнут у пациенток со 2-й и 3-й стадиями [[рак яичников|рака яичников]]. Исследование ИФН-гамма в раковых клетках ''[[in vitro]]'' является более обширным, и результаты указывают на антипролиферативную активность ИФН-гамма, приводящую к ингибированию роста или гибели клеток, как правило, индуцируемой апоптозом, но иногда и [[аутофагия|аутофагией]].<ref>{{cite journal | vauthors = Razaghi A, Owens L, Heimann K | title = Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation | journal = Journal of Biotechnology | volume = 240 | pages = 48–60 | date = December 2016 | pmid = 27794496 | doi = 10.1016/j.jbiotec.2016.10.022 }}</ref>
В отличие от IFN I типа, [[интерферон гамма]] еще не одобрен для лечения любого рака. Однако улучшение выживаемости наблюдалось при введении интерферона гамма пациентам с раком мочевого пузыря и меланомой. Наиболее многообещающий результат был достигнут у пациенток со 2-й и 3-й стадиями [[рак яичников|рака яичников]]. Исследование ИФН-гамма в раковых клетках ''[[in vitro]]'' является более обширным, и результаты указывают на антипролиферативную активность ИФН-гамма, приводящую к ингибированию роста или гибели клеток, как правило, индуцируемой апоптозом, но иногда и [[аутофагия|аутофагией]].<ref>{{cite journal | vauthors = Razaghi A, Owens L, Heimann K | title = Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation | journal = Journal of Biotechnology | volume = 240 | pages = 48–60 | date = December 2016 | pmid = 27794496 | doi = 10.1016/j.jbiotec.2016.10.022 }}</ref>
Строка 199: Строка 199:
[[Интерлейкин]]ы оказывают огромное влияние на иммунную систему. [[Интерлейкин-2]] применяется при лечении злокачественной меланомы и почечно-клеточного рака. При нормальной физиологии он стимулирует как эффекторные Т-клетки, так и Т-регуляторные клетки, но точный механизм его действия неизвестен.<ref name="pmid14708024" /><ref>{{cite journal | vauthors = Coventry BJ, Ashdown ML | title = The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses | journal = Cancer Management and Research | volume = 4 | pages = 215–21 | year = 2012 | pmid = 22904643 | pmc = 3421468 | doi = 10.2147/cmar.s33979 }}</ref>
[[Интерлейкин]]ы оказывают огромное влияние на иммунную систему. [[Интерлейкин-2]] применяется при лечении злокачественной меланомы и почечно-клеточного рака. При нормальной физиологии он стимулирует как эффекторные Т-клетки, так и Т-регуляторные клетки, но точный механизм его действия неизвестен.<ref name="pmid14708024" /><ref>{{cite journal | vauthors = Coventry BJ, Ashdown ML | title = The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses | journal = Cancer Management and Research | volume = 4 | pages = 215–21 | year = 2012 | pmid = 22904643 | pmc = 3421468 | doi = 10.2147/cmar.s33979 }}</ref>


==Комбинированная иммунотерапия==
Сочетание различных иммунотерапевтических препаратов, таких как ингибиторы PD1 и CTLA 4, может усилить противоопухолевый ответ, приводящий к длительным ответам. <ref>{{cite journal | vauthors = Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD | title = Combination immunotherapy: a road map | journal = Journal for Immunotherapy of Cancer | volume = 5 | pages = 16 | year = 2017 | pmid = 28239469 | pmc = 5319100 | doi = 10.1186/s40425-017-0218-5 }}</ref><ref>{{cite journal | vauthors = Mahoney KM, Rennert PD, Freeman GJ | title = Combination cancer immunotherapy and new immunomodulatory targets | journal = Nature Reviews. Drug Discovery | volume = 14 | issue = 8 | pages = 561–84 | date = August 2015 | pmid = 26228759 | doi = 10.1038/nrd4591 }}</ref>
[[Комбинаторная абляция и иммунотерапия|Сочетание абляционной терапии опухолей с иммунотерапией]] усиливает иммуностимулирующий ответ и оказывает синергетический эффект при лечении метастатического рака.<ref name="hindawi9251375">{{cite journal | vauthors = Mehta A, Oklu R, Sheth RA | title = Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response? | journal = Gastroenterology Research and Practice | volume = 2016 | pages = 9251375 | year = 2015 | pmid = 27051417 | pmc = 4802022 | doi = 10.1155/2016/9251375 }}</ref>
Сочетание контрольных точек иммунотерапии с фармацевтическими препаратами имеет потенциал для улучшения ответа, и такие комбинированные методы лечения являются высоко изученной областью клинических исследований.<ref>{{cite journal | vauthors = Tang J, Shalabi A, Hubbard-Lucey VM | title = Comprehensive analysis of the clinical immuno-oncology landscape | journal = Annals of Oncology | volume = 29 | issue = 1 | pages = 84–91 | date = January 2018 | pmid = 29228097 | doi = 10.1093/annonc/mdx755 | doi-access = free }}</ref> Иммуностимулирующие препараты, такие как ингибиторы [[Рецептор колониестимулирующего фактора 1|CSF-1R]] и агонисты [[Толл-подобные рецепторы|TLR]], были особенно эффективны в этой ситуации.<ref>{{cite journal | vauthors = Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM | title = Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity | journal = The Journal of Experimental Medicine | volume = 215 | issue = 3 | pages = 877–93 | date = March 2018 | pmid = 29436395 | pmc = 5839759 | doi = 10.1084/jem.20171435 }}</ref><ref>{{cite journal| vauthors = Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R |date=21 May 2018|title=TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy |journal=Nature Biomedical Engineering |volume=2|issue=8|pages=578–588|doi=10.1038/s41551-018-0236-8 |pmid=31015631}}</ref>
{{Reflist+}}
{{Reflist+}}



Версия от 07:18, 31 декабря 2020

Иммунотерапия рака
Пептидный эпитоп антигена CD20, связанный с ритуксимабом участка FAB
Пептидный эпитоп антигена CD20, связанный с ритуксимабом участка FAB

Иммунотерапия рака (иногда называемая иммуноонкологией) – это искусственная стимуляция иммунной системы для лечения рака, улучшающая естественную способность иммунной системы бороться с болезнью. Это программа фундаментальных исследований в области иммунологии рака и растущей специализации онкологии.

Иммунотерапия рака использует тот факт, что раковые клетки часто имеют опухолевые антигены, молекулы на их поверхности, которые могут быть обнаружены антителами белков иммунной системы, связывающимися с ними. Опухолевыми антигенами часто являются белки или другие макромолекулы (например, углеводы). Нормальные антитела связываются с внешними патогенами, но модифицированные иммунотерапевтические антитела связываются с опухолевыми антигенами, маркирующими и идентифицирующими раковые клетки для подавления или уничтожения иммунной системой.

В 2018 году американский иммунолог Джеймс Эллисон и японский иммунолог Тасуку Хондзё получили Нобелевскую премию по физиологии и медицине за открытие терапии рака путем ингибирования негативной иммунной регуляции.[1]

История

Первые свидетельства иммунотерапии рака появились в Иберийском папирусе (1550 г. до н. э.): Египетский фараон Имхотеп (2600 г. до н. э.) использовал припарки с последующим разрезом для лечения опухоли; что облегчало развитие инфекции в нужном месте и вызвало регрессию опухоли.[2] «В течение 17-го и 18-го веков различные формы иммунотерапии при раке получили широкое распространение... В XVIII и XIX веках для лечения рака использовались септические повязки, закрывающие язвенные опухоли. Хирургические раны оставляли открытыми, чтобы облегчить развитие инфекции, а гнойные язвы создавались намеренно... Один из наиболее известных эффектов микроорганизмов на...рак был зарегистрирован в 1891 году, когда американский хирург Уильям Коли привил пациентам с неоперабельными опухолями Streptococcus pyogenes."[2] "Коли тщательно изучил литературу, доступную в то время, и обнаружил 38 сообщений о раковых пациентах со случайной или ятрогенной лихорадочной рожей. У 12 пациентов саркома или карцинома полностью исчезла; а состояние других значительно улучшилось. Коли решил попробовать ятрогенную рожу в качестве терапии..."[3]" Коли разработал токсин, который содержал тепловыделяющие бактерии Streptococcus pyogenes и Serratia marcescens. До 1963 года это лечение использовалось для лечения саркомы".[2] "Коли ввел более 1000 раковым больным бактерии или их продукты".[4] 51,9% пациентов [Коли] с неоперабельными саркомами мягких тканей показали полную регрессию опухоли и прожили на 5 лет дольше, а 21,2% пациентов не имели клинических признаков опухоли по крайней мере через 20 лет после этого лечения.…" [2]

Категории

Иммунотерапия может быть классифицирована как активная или пассивная. Активная иммунотерапия специфически нацелена на опухолевые клетки через иммунную систему. Например, вакцины против рака и CAR-T-клетки, а также таргетная терапия антителами. Напротив, пассивная иммунотерапия не нацелена непосредственно на опухолевые клетки, но усиливает способность иммунной системы атаковать раковые клетки. К примеру, ингибиторы контрольных точек и цитокины.

Активная клеточная терапия направлена на уничтожение раковых клеток путем распознавания различных маркеров, известных как антигены. В вакцинах против рака цель состоит в том, чтобы сгенерировать иммунный ответ на эти антигены с помощью вакцины. В настоящее время одобрена только одна вакцина (sipuleucel-T для лечения рака предстательной железы). В клеточно-опосредованной терапии, такой как CAR-T-клеточная терапия, иммунные клетки извлекаются из пациента генетически модифицируются для распознавания опухолеспецифических антигенов и возвращаются пациенту. Типы клеток, которые могут быть использованы таким образом, - это естественные киллеры (NK), лимфокин-активированные киллеры, цитотоксические Т-лимфоциты и дендритные клетки. Наконец, могут быть разработаны специфические антитела, которые распознают раковые клетки и нацеливают их на уничтожение иммунной системой. Примеры таких антител включают ритуксимаб (нацеленный на CD-20), трастузумаб (нацеленный на HER-2) и цетуксимаб (нацеленный на EGFR).

Пассивная терапия антителами направлена на повышение активности иммунной системы без целенаправленного воздействия на раковые клетки. Например, цитокины непосредственно стимулируют иммунную систему и повышают иммунную активность. Ингибиторы контрольных точек нацелены на белки (иммунные контрольные точки), которые обычно ослабляют иммунный ответ. Это повышает способность иммунной системы атаковать раковые клетки. В настоящее время проводятся исследования по выявлению новых потенциальных мишеней для усиления иммунной функции. Одобренные ингибиторы контрольных точек включают такие антитела, как ипилимумаб, ипилимумаб и пембролизумаб.

Клеточная иммунотерапия

Терапия дендритными клетками

Клетки крови удаляются из организма, инкубируются с опухолевым антигеном(антигенами) и активируются. Зрелые дендритные клетки затем возвращаются к исходному донору, несущему рак, чтобы вызвать иммунный ответ.

Терапия дендритными клетками провоцирует противоопухолевый ответ, заставляя дендритные клетки представлять опухолевые антигены лимфоцитам, что активирует их, заставляя их убивать другие клетки, которые представляют антиген. Дендритные клетки – это антигенпрезентирующие клетки (АПК) иммунной системы млекопитающих.[5] При лечении рака они помогают нацеливаться на раковые антигены.[6] Единственной одобренной терапией клеточного рака, основанной на дендритных клетках, является sipuleucel-T.

Одним из способов индуцирования дендритных клеток к представлению опухолевых антигенов является вакцинация аутологичными опухолевыми лизатами[7] или короткими пептидами (небольшие части белка, соответствующие белковым антигенам на раковых клетках). Эти пептиды часто вводят в сочетании с адъювантами (высокоиммуногеннымивеществами) для усиления иммунных и противоопухолевых реакций. Другие адъюванты включают белки или другие химические вещества, которые привлекают и/или активируют дендритные клетки, такие как гранулоцитарно-макрофагальный колониестимулирующий фактор (GM-CSF). Наиболее распространенным источником антигенов, используемых для вакцинации дендритных клеток при Глиобластоме (ГБМ) как агрессивной опухоли головного мозга, были лизат цельной опухоли, РНК ЦМВ-антигена и ассоциированные с опухолью пептиды, такие как EGFRvIII.[8]

Дендритные клетки также могут быть активированы in vivo, заставляя опухолевые клетки экспрессировать GM-CSF. Это может быть достигнуто либо путем генной инженерии опухолевых клеток для получения GM-CSF, либо путем заражения опухолевых клеток онколитическим вирусом, экспрессирующим GM-CSF.

Другая стратегия состоит в том, чтобы удалить дендритные клетки из крови пациента и активировать их вне организма. Дендритные клетки активируются в присутствии опухолевых антигенов, которые могут представлять собой один опухолеспецифический пептид/белок или лизат опухолевых клеток (раствор разрушенных опухолевых клеток). Эти клетки (с дополнительными адъювантами) инфузируются и провоцируют иммунный ответ.

Терапия дендритными клетками включает использование антител, которые связываются с рецепторами на поверхности дендритных клеток. Антигены могут быть добавлены к антителу и могут индуцировать созревание дендритных клеток и обеспечивать иммунитет к опухоли. В качестве мишеней для антител использовались рецепторы дендритных клеток, такие как TLR3, TLR7, TLR8 или CD40.[6] Интерфейс дендритных клеток и NK-клеток также играет важную роль в иммунотерапии. Разработка новых стратегий вакцинации на основе дендритных клеток должна также охватывать стимулирующую NK-клетки потенцию. Крайне важно систематически включать мониторинг NK-клеток в качестве результата в противоопухолевые клинические испытания на основе DC.

Одобренные препараты

Sipuleucel-T (Provenge) был одобрен для лечения бессимптомного или минимально симптоматического метастатического кастрационно-резистентного рака предстательной железы в 2010 году. Лечение заключается в удалении антигенпрезентирующих клеток из крови методом лейкафереза и выращивании их с помощью гибридного белка PA2024, полученного из GM-CSF и простатспецифической простатической кислой фосфатазы (PAP), и реинфузии. Этот процесс повторяется три раза.[9][10][11][12]

Терапия CAR-T-клетками

Предпосылкой иммунотерапии CAR-T является модификация Т-клеток для распознавания раковых клеток с целью более эффективного нацеливания и уничтожения их. Ученые собирают Т-клетки у людей, генетически изменяют их, чтобы добавить химерный антигенный рецептор (CAR), который специфически распознает раковые клетки, а затем вводят полученные CAR-Т-клетки пациентам, чтобы атаковать их опухоли.

Одобренные препараты

Тисагенлеклейсел (Kymriah) – это химерный рецептор антигена (CAR-Т) терапии, был одобрен FDA в 2017 году для лечения острого лимфобластного лейкоза (ALL).[13] Это лечение удаляет CD19-позитивные клетки (В-клетки) из организма (включая больные и нормальные клетки, продуцирующие антитела).

Аксикабтаген силолейсел (Yescarta) – еще одна терапия CAR-T, одобренная в 2017 году для лечения острого лимфобластного лейкоза (DLBCL).[14]

Терапия антителами

Многие формы антител могут быть сконструированы.

Антитела являются ключевым компонентом адаптивного иммунного ответа, играя центральную роль как в распознавании чужеродных антигенов, так и в стимулировании иммунного ответа. Антитела представляют собой Y-образные белки, продуцируемые некоторыми B-лимфоцитами, и состоят из двух областей: антигенсвязывающего фрагмента (Fab), который связывается с антигенами, и области кристаллизации фрагмента (Fc), которая взаимодействует с так называемыми Fc-рецепторами экспрессируемыми на поверхности различных типов иммунных клеток, включая макрофаги, нейтрофилы, и NK-клетки. Многие иммунотерапевтические схемы включают антитела. Технология моноклональных антител проектирует и генерирует антитела против специфических антигенов, таких как те, которые присутствуют на поверхности опухоли. Эти антитела чувствительны к антигенам опухоли, поэтому могут быть введены в опухоль.

Типы антител

Коньюгация

В лечении рака используются два типа препаратов:[15]

  • Голые моноклональные антитела – это антитела без добавленных элементов. Большинство методов лечения антителами используют этот тип антител.
  • Конъюгированные моноклональные антитела присоединяются к другой молекуле, которая либо цитотоксична, либо радиоактивна. Токсичные химические вещества обычно используются в качестве химиотерапевтических препаратов, но могут использоваться и другие токсины. Антитело связывается со специфическими антигенами на поверхности раковых клеток, направляя терапию на опухоль. Антитела, связанные с радиоактивными соединениями, называются радиоактивно мечеными. Химиомаркированные или иммунотоксиновые антитела маркируются химиотерапевтическими молекулами или токсинами соответственно.[16] Исследования также продемонстрировали конъюгацию агониста TLR с противоопухолевым моноклональным антителом.[17]

Области Fc

Способность Fc связывать Fc-рецепторы важна, потому что она позволяет антителам активировать иммунную систему. Области Fc разнообразны: они существуют в многочисленных подтипах и могут быть дополнительно модифицированы, например, с добавлением сахаров в процессе, называемом гликозилированием. Перемены в области Fc могут изменить способность антитела вовлекать Fc-рецепторы и, как следствие, определять тип иммунного ответа, который запускает антитело.[18] Например, блокаторы иммунных контрольных точек, нацеленные на PD-1, представляют собой антитела, предназначенные для связывания PD-1, экспрессируемого Т-клетками, и реактивации этих клеток для устранения опухолей.[19] Анти-PD-1 препараты содержат не только Fab-область, которая связывает PD-1, но и Fc-область. Экспериментальная работа показывает, что Fc-порция препаратов иммунотерапии рака может влиять на исход лечения. Например, Анти-PD-1 препараты с Fc-областями, которые связывают ингибиторные Fc-рецепторы, могут иметь сниженную терапевтическую эффективность.[20] Визуализирующие исследования также показали, что Fc-область Анти-PD-1 препаратов может связывать Fc-рецепторы, экспрессируемые опухоль-ассоциированными макрофагами. Этот процесс удаляет лекарства от их предполагаемых целей (т. е. Молекулы PD-1 экспрессируются на поверхности Т-клеток) и ограничивает терапевтическую эффективность.[21] Кроме того, антитела, нацеленные на Ко-стимулирующий белок CD40, требуют взаимодействия с селективными Fc-рецепторами для оптимальной терапевтической эффективности.[22] Вместе эти исследования подчеркивают важность статуса Fc в стратегиях таргетирования иммунных контрольных точек на основе антител.

Человеческие/нечеловеческие антитела

Антитела могут поступать из различных источников, включая клетки человека, мышей и их комбинацию (химерные антитела). Различные источники антител могут провоцировать различные виды иммунных реакций. Например, иммунная система человека может распознавать мышиные антитела (также известные как крысиные антитела) и вызывать иммунный ответ против них. Это может снизить эффективность антител в качестве лечения и вызвать иммунную реакцию. Химерные антитела пытаются снизить иммуногенность мышиных антител путем замены части антитела соответствующим человеческим аналогом. Гуманизированные антитела почти полностью являются человеческими; комплементарность, определяющая области вариабельных областей получается только из мышей. Человеческие антитела получаются с использованием немодифицированной человеческой ДНК.[16]

Антителозависимая клеточно-опосредованная цитотоксичность. Когда Fc-рецепторы на естественных киллерных клетках взаимодействуют с Fc-областями антител, связанных с раковыми клетками, NK-клетка высвобождает перфорин и гранзим, что приводит к апоптозу раковых клеток.

Механизм действия

Антителозависимая клеточно-опосредованная цитотоксичность (ADCC)

Антителозависимая клеточная цитотоксичность (ADCC) требует, чтобы антитела связывались с поверхностью клеток-мишеней. Антитела формируются из области связывания (Fab) и области Fc, которые могут быть обнаружены клетками иммунной системы через их поверхностные рецепторы Fc. Fc-рецепторы находятся на многих клетках иммунной системы, включая NK-клетки. Когда NK-клетки сталкиваются с клетками, покрытыми антителами, Fc-области последних взаимодействуют с их Fc-рецепторами, высвобождая перфорин и гранзим В, чтобы убить опухолевую клетку. Например, Ритуксимаб, Офатумумаб, Элотузумаб и Алемтузумаб. Разрабатываемые антитела имеют измененные области Fc, которые имеют более высокое сродство к определенному типу Fc-рецептора, FcyRIIIA, что может значительно повысить эффективность.[23][24]

Активация комплемента

Система комплемента включает в себя белки крови, которые могут вызвать гибель клеток после того, как антитело связывается с клеточной поверхностью (классический путь активации системы комплемента, один из способов активации комплемента). Как правило, система имеет дело с чужеродными патогенами, но может быть активирована терапевтическими антителами при раке. Система может быть активирована, если антитело химерное, гуманизированное или человеческое; до тех пор, пока оно содержит область IgG1 Fc. Комплемент может привести к гибели клеток путем активации мембраноатакующего комплекса, известного как комплементзависимая цитотоксичность; усиление антителозависимой клеточно-опосредованной цитотоксичности; и CR3- зависимой клеточной цитотоксичности. Комплементзависимая цитотоксичность возникает, когда антитела связываются с поверхностью раковой клетки, комплекс С1 связывается с этими антителами, и впоследствии в клеточной мембране рака образуются белковые поры.[25]

Блокирование

Антитела также могут функционировать, связываясь с белками и физически блокируя их взаимодействие с другими белками. Ингибиторы контрольных точек (CTLA-4, PD-1 и PD-L1) действуют по этому механизму. Короче говоря, ингибиторы контрольных точек - это белки, которые обычно помогают замедлить иммунные реакции и предотвратить атаку иммунной системы на нормальные клетки. Ингибиторы контрольных точек связывают эти белки и препятствуют их нормальному функционированию, что повышает активность иммунной системы. Примеры включают дурвалумаб, ипилимумаб, ниволумаб и пембролизумаб.

Одобренные FDA антитела

Иммунотерапия рака: моноклональные антитела[15][26]
Антитело Бренд Тип Цель Дата одобрения Одобренное лечение
Алемтузумаб Campath гуманизированный CD52 2001 Т-лимфоцитный хронический лимфолейкоз (CLL)[27]
Атезолизумаб Tecentriq гуманизированный PD-L1 2016 рак мочевого пузыря[28]
Авелумаб Bavencio человеческий PD-L1 2017 метастатическая карцинома Меркеля[29]
Ипилимумаб Yervoy человеческий CTLA4 2011 метастатическая меланома[30]
Элотузумаб Empliciti гуманизированный SLAMF7 2015 множественная миелома [31]
Офатумумаб Arzerra человеческий CD20 2009 рефракторный хронический миеломоноцитарный лейкоз[32]
Ниволумаб Opdivo человеческий PD-1 2014 нерезектабельная или метастатическая меланома, плоскоклеточный немелкоклеточный рак легких, почечно-клеточный рак, колоректальный рак, гепатоцеллюлярная карцинома, классическая лимфома Ходжкина[33][34]
Пембролизумаб Keytruda человеческмй PD-1 2014 нерезектабельная или метастатическая меланома, плоскоклеточный немелкоклеточный рак легких (NSCLC),[35] лимфогранулематоз,[36] карцинома Меркеля (MCC),[37] диффузная В-крупноклеточная лимфома (PMBCL),[38] рак желудка, рак шейки матки[39]
Ритуксимаб Rituxan, Mabthera химический CD20 1997 неходжкинские лимфомы[40]
Дурвалумаб Imfinzi человеческий PD-L1 2017 рак мочевого пузыря,[41]немелкоклеточный рак легких[42]

Алемтузумаб

Алемтузумаб (Campath-1H) – это анти-CD52 гуманизированное моноклональное антитело IgG1, предназначенное для лечения флударабин-рефрактерного хронического лимфолейкоза (CLL), кожной Т-клеточной лимфомы, периферической Т-клеточной лимфомы и Т-клеточного пролимфоцитарного лейкоза. CD52 обнаруживается на >95% лимфоцитов периферической крови (как Т-клеток, так и В-клеток) и моноцитов, но его функция в лимфоцитах неизвестна. Он связывается с CD52 и инициирует его цитотоксический эффект с помощью механизмов фиксации комплемента и ADCC. Из-за антител-мишеней (клеток иммунной системы) распространенными осложнениями терапии алемтузумабом являются инфекция, токсичность и миелосупрессия.[43][44][45]

Дурвалумаб

Дурвалумаб (Imfinzi) – это моноклональное антитело к человеческому иммуноглобулину G1 kappa (IgG1k), которое блокирует взаимодействие запрограммированного лиганда клеточной смерти 1 (PD-L1) с молекулами PD-1 и CD80 (B7.1). Дурвалумаб одобрен для лечения пациентов с местнораспространенным или метастатическим уротелиальным раком, у которых:

  • есть прогрессирование заболевания во время или после платиносодержащей химиотерапии.
  • есть прогрессирование заболевания в течение 12 месяцев неоадъювантного или адъювантного лечения платиносодержащей химиотерапией.

16 февраля 2018 года Управление по контролю за продуктами и лекарствами одобрило применение дурвалумаба у пациентов с нерезектабельным немелкоклеточным раком легкого III стадии (NSCLC), заболевание которых не прогрессировало после одновременной химиотерапии на основе платины и лучевой терапии.[46]

Ипилимумаб

Ипилимумаб (Yervoy) - это человеческое антитело IgG1, связывающее поверхностный белок CTLA4. В нормальной физиологии Т-клетки активируются двумя сигналами: Т-клеточный рецептором, связывающимся с антиген-MHC-комплексом, и Т-клеточным поверхностным рецептором CD28, связывающимся с белками CD80 или CD86. CTLA 4 связывается с CD80 или CD86, предотвращая связывание CD28 с этими поверхностными белками и, следовательно, отрицательно регулирует активацию Т-клеток. [47][48][49][50]

Активные цитотоксические Т-лимфоциты необходимы иммунной системе для атаки клеток меланомы. Обычно ингибируемые активные специфичные для меланомы цитотоксические Т-клетки могут вызывать эффективный противоопухолевый ответ. Ипилимумаб может вызывать сдвиг соотношения регуляторных Т-клеток к цитотоксическим Т-клеткам для усиления противоопухолевого ответа. Регуляторные Т-клетки ингибируют другие Т-клетки, что может принести пользу в отношении опухоли.[47][48][49][50]

Ниволумаб

Ниволумаб – это человеческое антитело IgG4, которое предотвращает инактивацию Т-клеток, блокируя связывание запрограммированного лиганда 1 клеточной смерти 1 или запрограммированного лиганда 2 клеточной смерти 1 (PD-L1 или PD-L2), белка, экспрессируемого раковыми клетками, с PD-1, белком, обнаруженным на поверхности активированных Т-клеток.[51][52] Ниволумаб используется при прогрессирующей меланоме, метастатическом почечно-клеточном раке, прогрессирующем раке легких, прогрессирующем раке головы и шеи, а также лимфоме Ходжкина.[53]

Офатумумаб

Офатумумаб – это человеческое антитело IgG1 второго поколения, которое связывается с CD20. Он используется при лечении хронического лимфолейкоза (CLL), поскольку раковые клетки CLL обычно являются CD20-экспрессирующими В-клетками. В отличие от ритуксимаба, который связывается с большой петлей белка CD20, офатумумаб связывается с отдельной маленькой петлей. Это может объяснить их различные характеристики. По сравнению с ритуксимабом офатумумаб индуцирует комплементзависимую цитотоксичность в более низкой дозе при меньшей иммуногенности.[54][55]

Пембролизумаб

С 2019 года пембролизумаб, который блокирует PD-1, запрограммированный белок клеточной смерти 1, используется путем внутривенной инфузии для лечения неоперабельной или метастатической меланомы, метастатического немелкоклеточного рака легкого (NSCLC) в определенных ситуациях, в качестве второй линии лечения плоскоклеточного рака головы и шеи (HNSCC), после химиотерапии на основе платины, а также для лечения взрослых и педиатрических пациентов с рефрактерным классическим лимфогранулематозом (cHL).[56][57] Он также показан некоторым пациентам с уротелиальной карциномой, раком желудка и раком шейки матки.[58]

Ритуксимаб

Ритуксимаб - химерное моноклональное IgG1 -антитело, специфичное к CD20, разработанное из родительского антитела ибритумомаба. Как и в случае с ибритумомабом, ритуксимаб нацелен на CD20, что делает его эффективным при лечении некоторых злокачественных опухолей В-клеток. К ним относятся агрессивные и вялые лимфомы, такие как диффузная В-крупноклеточная лимфома, фолликулярная лимфома, а также лейкозы, такие как В-клеточный хронический лимфолейкоз. Хотя функция CD20 относительно неизвестна, CD20 может быть кальциевым каналом, участвующим в активации В-клеток. Способ действия антител заключается в основном в индукции ADCC и комплемент-опосредованной цитотоксичности. Другие механизмы включают апоптоз и остановку клеточного роста. Ритуксимаб также повышает чувствительность раковых В-клеток к химиотерапии.[59][60][61][62][63]

Цитокиновая терапия

Цитокины – это белки, продуцируемые многими типами клеток, присутствующих в опухоли. Они могут модулировать иммунные реакции. Опухоль часто использует их, чтобы разрастись и уменьшить иммунный ответ. Эти иммуномодулирующие эффекты позволяют использовать их в качестве лекарств для провоцирования иммунного ответа. Обычно используются цитокин-интерфероны и интерлейкины.[64]

Интерлейкин-2 и интерферон-α – это цитокины, белки, которых регулируют и координируют поведение иммунной системы. Они обладают способностью усиливать противоопухолевую активность и поэтому могут использоваться в качестве пассивного лечения рака. Интерферон-α используется при лечении волосатоклеточного лейкоза, связанной со СПИДом саркомы Капоши, фолликулярной лимфомы, хронического миелолейкоза и злокачественной меланомы. Интерлейкин-2 применяется при лечении злокачественной меланомы и почечно-клеточного рака.

Интерферон

Интерфероны вырабатываются иммунной системой. Они обычно участвуют в противовирусной реакции, но также имеют применение при раке. Они делятся на три группы: тип I (IFNα и IFNβ), тип II (IFNγ) и тип III (IFNλ). IFNα был одобрен для использования при волосатоклеточном лейкозе, связанной со СПИДом саркоме Капоши, фолликулярной лимфоме, хроническом миелоидном лейкозе и меланоме. Тип I и II IFN были широко исследованы, и хотя оба типа способствуют противоопухолевым эффектам иммунной системы, клинически эффективными оказались только IFNI типа I. IFNa ИФН I и II типов. IFNλ хорошо проявил себя в качестве к анти -- тумора на животных моделях.[65][66]

В отличие от IFN I типа, интерферон гамма еще не одобрен для лечения любого рака. Однако улучшение выживаемости наблюдалось при введении интерферона гамма пациентам с раком мочевого пузыря и меланомой. Наиболее многообещающий результат был достигнут у пациенток со 2-й и 3-й стадиями рака яичников. Исследование ИФН-гамма в раковых клетках in vitro является более обширным, и результаты указывают на антипролиферативную активность ИФН-гамма, приводящую к ингибированию роста или гибели клеток, как правило, индуцируемой апоптозом, но иногда и аутофагией.[67]

Интерлейкин

Интерлейкины оказывают огромное влияние на иммунную систему. Интерлейкин-2 применяется при лечении злокачественной меланомы и почечно-клеточного рака. При нормальной физиологии он стимулирует как эффекторные Т-клетки, так и Т-регуляторные клетки, но точный механизм его действия неизвестен.[64][68]

Комбинированная иммунотерапия

Сочетание различных иммунотерапевтических препаратов, таких как ингибиторы PD1 и CTLA 4, может усилить противоопухолевый ответ, приводящий к длительным ответам. [69][70]

Сочетание абляционной терапии опухолей с иммунотерапией усиливает иммуностимулирующий ответ и оказывает синергетический эффект при лечении метастатического рака.[71]

Сочетание контрольных точек иммунотерапии с фармацевтическими препаратами имеет потенциал для улучшения ответа, и такие комбинированные методы лечения являются высоко изученной областью клинических исследований.[72] Иммуностимулирующие препараты, такие как ингибиторы CSF-1R и агонисты TLR, были особенно эффективны в этой ситуации.[73][74]

Предупреждение: нестандартный шаблон примечаний следует заменить на стандартный шаблон {{примечания}}.
  1. The Nobel Prize in Physiology or Medicine 2018 (амер. англ.). NobelPrize.org. Дата обращения: 4 августа 2019.
  2. 1 2 3 4 Kucerova P, Cervinkova M (April 2016). "Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment". Anti-Cancer Drugs. 27 (4): 269—77. doi:10.1097/CAD.0000000000000337. PMC 4777220. PMID 26813865.
  3. Kienle GS (March 2012). "Fever in Cancer Treatment: Coley's Therapy and Epidemiologic Observations". Global Advances in Health and Medicine. 1 (1): 92—100. doi:10.7453/gahmj.2012.1.1.016. PMC 3833486. PMID 24278806.
  4. McCarthy EF (2006). "The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas". The Iowa Orthopaedic Journal. 26: 154—8. PMC 1888599. PMID 16789469.
  5. Riddell SR (July 2001). "Progress in cancer vaccines by enhanced self-presentation". Proceedings of the National Academy of Sciences of the United States of America. 98 (16): 8933—35. Bibcode:2001PNAS...98.8933R. doi:10.1073/pnas.171326398. PMC 55350. PMID 11481463.
  6. 1 2 Palucka K, Banchereau J (July 2013). "Dendritic-cell-based therapeutic cancer vaccines". Immunity. 39 (1): 38—48. doi:10.1016/j.immuni.2013.07.004. PMC 3788678. PMID 23890062.
  7. Hirayama M, Nishimura Y (July 2016). "The present status and future prospects of peptide-based cancer vaccines". International Immunology. 28 (7): 319—28. doi:10.1093/intimm/dxw027. PMID 27235694.
  8. Dastmalchi, Farhad. Dendritic Cell Therapy / Farhad Dastmalchi, Aida Karachi, Duane Mitchell … [и др.]. — American Cancer Society, June 2018. — P. 1–27. — ISBN 9780470015902. — doi:10.1002/9780470015902.a0024243.
  9. Gardner TA, Elzey BD, Hahn NM (April 2012). "Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer". Human Vaccines & Immunotherapeutics. 8 (4): 534—39. doi:10.4161/hv.19795. PMID 22832254.
  10. Oudard S (May 2013). "Progress in emerging therapies for advanced prostate cancer". Cancer Treatment Reviews. 39 (3): 275—89. doi:10.1016/j.ctrv.2012.09.005. PMID 23107383.
  11. Sims RB (June 2012). "Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer". Vaccine. 30 (29): 4394—97. doi:10.1016/j.vaccine.2011.11.058. PMID 22122856.
  12. Shore ND, Mantz CA, Dosoretz DE, Fernandez E, Myslicki FA, McCoy C, Finkelstein SE, Fishman MN (January 2013). "Building on sipuleucel-T for immunologic treatment of castration-resistant prostate cancer". Cancer Control. 20 (1): 7—16. doi:10.1177/107327481302000103. PMID 23302902.
  13. Commissioner, Office of the Press Announcements – FDA approval brings first gene therapy to the United States. fda.gov. Дата обращения: 13 декабря 2017.
  14. FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. fda.gov (18 октября 2017). Дата обращения: 8 ноября 2017.
  15. 1 2 Scott AM, Wolchok JD, Old LJ (March 2012). "Antibody therapy of cancer". Nature Reviews. Cancer. 12 (4): 278—87. doi:10.1038/nrc3236. PMID 22437872.
  16. 1 2 Harding FA, Stickler MM, Razo J, DuBridge RB (May-Jun 2010). "The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions". mAbs. 2 (3): 256—65. doi:10.4161/mabs.2.3.11641. PMC 2881252. PMID 20400861.{{cite journal}}: Википедия:Обслуживание CS1 (формат даты) (ссылка)
  17. Gadd AJ, Greco F, Cobb AJ, Edwards AD (August 2015). "Targeted Activation of Toll-Like Receptors: Conjugation of a Toll-Like Receptor 7 Agonist to a Monoclonal Antibody Maintains Antigen Binding and Specificity" (PDF). Bioconjugate Chemistry (англ.). 26 (8): 1743—52. doi:10.1021/acs.bioconjchem.5b00302. PMID 26133029. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an antitumor mAb (the anti-hCD20 rituximab) without compromising antigen specificity.
  18. Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV (August 2014). "Type I and type II Fc receptors regulate innate and adaptive immunity". Nature Immunology. 15 (8): 707—16. doi:10.1038/ni.2939. PMC 7430760. PMID 25045879.
  19. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (June 2012). "Safety, activity, and immune correlates of anti-PD-1 antibody in cancer". The New England Journal of Medicine. 366 (26): 2443—54. doi:10.1056/NEJMoa1200690. PMC 3544539. PMID 22658127.
  20. Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV (October 2015). "FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis". Cancer Cell. 28 (4): 543. doi:10.1016/j.ccell.2015.09.011. PMID 28854351.
  21. Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, Weissleder R, Pittet MJ (May 2017). "In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy". Science Translational Medicine. 9 (389): eaal3604. doi:10.1126/scitranslmed.aal3604. PMC 5734617. PMID 28490665.
  22. Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV (July 2016). "Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement". Cancer Cell. 29 (6): 820—31. doi:10.1016/j.ccell.2016.05.001. PMC 4975533. PMID 27265505.
  23. Weiner LM, Surana R, Wang S (May 2010). "Monoclonal antibodies: versatile platforms for cancer immunotherapy". Nature Reviews. Immunology. 10 (5): 317—27. doi:10.1038/nri2744. PMC 3508064. PMID 20414205.
  24. Seidel UJ, Schlegel P, Lang P (2013). "Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies". Frontiers in Immunology. 4: 76. doi:10.3389/fimmu.2013.00076. PMC 3608903. PMID 23543707.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  25. Gelderman KA, Tomlinson S, Ross GD, Gorter A (March 2004). "Complement function in mAb-mediated cancer immunotherapy". Trends in Immunology. 25 (3): 158—64. doi:10.1016/j.it.2004.01.008. PMID 15036044.
  26. Waldmann TA (March 2003). "Immunotherapy: past, present and future". Nature Medicine. 9 (3): 269—77. doi:10.1038/nm0303-269. PMID 12612576.
  27. Demko S, Summers J, Keegan P, Pazdur R (February 2008). "FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia". The Oncologist. 13 (2): 167—74. CiteSeerX 10.1.1.503.6960. doi:10.1634/theoncologist.2007-0218. PMID 18305062.
  28. "FDA approves new, targeted treatment for bladder cancer". FDA. 18 May 2016. Дата обращения: 20 мая 2016.
  29. US Food and Drug Administration – Avelumab Prescribing Label.
  30. Pazdur, Richard FDA approval for Ipilimumab. Дата обращения: 7 ноября 2013.
  31. Bristol-Myers Squibb and AbbVie Receive U.S. FDA Breakthrough Therapy Designation for Elotuzumab, an Investigational Humanized Monoclonal Antibody for Multiple Myeloma | BMS Newsroom.
  32. Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, McDougal A, Pilaro A, Chiang R, Gootenberg JE, Keegan P, Pazdur R (September 2010). "U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab". Clinical Cancer Research. 16 (17): 4331—38. doi:10.1158/1078-0432.CCR-10-0570. PMID 20601446.
  33. Sharma P, Allison JP (April 2015). "The future of immune checkpoint therapy". Science. 348 (6230): 56—61. Bibcode:2015Sci...348...56S. doi:10.1126/science.aaa8172. PMID 25838373.
  34. Opdivo Drug Approval History.
  35. "FDA approves pembrolizumab in combination with chemotherapy for first-line treatment of metastatic squamous NSCLC". FDA. 20 December 2019.
  36. "Pembrolizumab (KEYTRUDA) for classical Hodgkin lymphoma". FDA. 9 February 2019.
  37. "FDA approves pembrolizumab for Merkel cell carcinoma". FDA. 20 December 2019.
  38. "FDA approves pembrolizumab for treatment of relapsed or refractory PMBCL". FDA. 9 February 2019.
  39. National Cancer Institute - Pembrolizumab Use in Cancer (18 сентября 2014).
  40. James JS, Dubs G (December 1997). "FDA approves new kind of lymphoma treatment. Food and Drug Administration". AIDS Treatment News (284): 2—3. PMID 11364912.
  41. Research, Center for Drug Evaluation and Approved Drugs – Durvalumab (Imfinzi). fda.gov. Дата обращения: 6 мая 2017.
  42. "FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC". FDA. 9 February 2019.
  43. Byrd JC, Stilgenbauer S, Flinn IW (1 January 2004). "Chronic lymphocytic leukemia". Hematology. American Society of Hematology. Education Program. 2004 (1): 163—83. doi:10.1182/asheducation-2004.1.163. PMID 15561682.
  44. Domagała A, Kurpisz M (2001). "CD52 antigen--a review". Medical Science Monitor. 7 (2): 325—31. PMID 11257744.
  45. Dearden C (July 2012). "How I treat prolymphocytic leukemia". Blood. 120 (3): 538—51. doi:10.1182/blood-2012-01-380139. PMID 22649104.
  46. "FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC". FDA. 9 February 2019.
  47. 1 2 Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P (June 2011). "Ipilimumab". Nature Reviews. Drug Discovery. 10 (6): 411—12. doi:10.1038/nrd3463. PMID 21629286.
  48. 1 2 Lipson EJ, Drake CG (November 2011). "Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma". Clinical Cancer Research. 17 (22): 6958—62. doi:10.1158/1078-0432.CCR-11-1595. PMC 3575079. PMID 21900389.
  49. 1 2 Thumar JR, Kluger HM (December 2010). "Ipilimumab: a promising immunotherapy for melanoma". Oncology. 24 (14): 1280—88. PMID 21294471.
  50. 1 2 Chambers CA, Kuhns MS, Egen JG, Allison JP (2001). "CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy". Annual Review of Immunology. 19: 565—94. doi:10.1146/annurev.immunol.19.1.565. PMID 11244047.
  51. Ошибка в сносках?: Неверный тег <ref>; для сносок :4 не указан текст
  52. Pardoll DM (March 2012). "The blockade of immune checkpoints in cancer immunotherapy". Nature Reviews. Cancer. 12 (4): 252—64. doi:10.1038/nrc3239. PMC 4856023. PMID 22437870.
  53. Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P, Chandra AB (2017). "Current Diagnosis and Management of Immune Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitor Therapy". Frontiers in Pharmacology. 8: 49. doi:10.3389/fphar.2017.00049. PMC 5296331. PMID 28228726.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  54. Castillo J, Perez K (2010). "The role of ofatumumab in the treatment of chronic lymphocytic leukemia resistant to previous therapies". Journal of Blood Medicine. 1: 1—8. doi:10.2147/jbm.s7284. PMC 3262337. PMID 22282677.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  55. Zhang B (Jul-Aug 2009). "Ofatumumab". mAbs. 1 (4): 326—31. doi:10.4161/mabs.1.4.8895. PMC 2726602. PMID 20068404.{{cite journal}}: Википедия:Обслуживание CS1 (формат даты) (ссылка)
  56. Pembrolizumab label. FDA (май 2017). linked from Index page at FDA website November 2016
  57. Pembrolizumab label at eMC. UK Electronic Medicines Compendium (27 января 2017).
  58. HIGHLIGHTS OF PRESCRIBING INFORMATION - KEYTRUDA (Pembrolizumab). fda.gov (июнь 2018). Дата обращения: 27 февраля 2019.
  59. Keating GM (July 2010). "Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma". Drugs. 70 (11): 1445—76. doi:10.2165/11201110-000000000-00000. PMID 20614951.
  60. Plosker GL, Figgitt DP (2003). "Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia". Drugs. 63 (8): 803—43. doi:10.2165/00003495-200363080-00005. PMID 12662126.
  61. Cerny T, Borisch B, Introna M, Johnson P, Rose AL (November 2002). "Mechanism of action of rituximab". Anti-Cancer Drugs. 13 Suppl 2: S3—10. doi:10.1097/00001813-200211002-00002. PMID 12710585.
  62. Janeway, Charles. Immunobiology / Charles Janeway, Paul Travers, Mark Walport … [и др.]. — Fifth. — New York and London : Garland Science, 2001. — ISBN 978-0-8153-4101-7.Ошибка: некорректно задана дата установки (исправьте через подстановку шаблона)
  63. Weiner GJ (April 2010). "Rituximab: mechanism of action". Seminars in Hematology. 47 (2): 115—23. doi:10.1053/j.seminhematol.2010.01.011. PMC 2848172. PMID 20350658.
  64. 1 2 Dranoff G (January 2004). "Cytokines in cancer pathogenesis and cancer therapy". Nature Reviews. Cancer. 4 (1): 11—22. doi:10.1038/nrc1252. PMID 14708024.
  65. Dunn GP, Koebel CM, Schreiber RD (November 2006). "Interferons, immunity and cancer immunoediting". Nature Reviews. Immunology. 6 (11): 836—48. doi:10.1038/nri1961. PMID 17063185.
  66. Lasfar A, Abushahba W, Balan M, Cohen-Solal KA (2011). "Interferon lambda: a new sword in cancer immunotherapy". Clinical & Developmental Immunology. 2011: 349575. doi:10.1155/2011/349575. PMC 3235441. PMID 22190970.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  67. Razaghi A, Owens L, Heimann K (December 2016). "Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation". Journal of Biotechnology. 240: 48—60. doi:10.1016/j.jbiotec.2016.10.022. PMID 27794496.
  68. Coventry BJ, Ashdown ML (2012). "The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses". Cancer Management and Research. 4: 215—21. doi:10.2147/cmar.s33979. PMC 3421468. PMID 22904643.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  69. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017). "Combination immunotherapy: a road map". Journal for Immunotherapy of Cancer. 5: 16. doi:10.1186/s40425-017-0218-5. PMC 5319100. PMID 28239469.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  70. Mahoney KM, Rennert PD, Freeman GJ (August 2015). "Combination cancer immunotherapy and new immunomodulatory targets". Nature Reviews. Drug Discovery. 14 (8): 561—84. doi:10.1038/nrd4591. PMID 26228759.
  71. Mehta A, Oklu R, Sheth RA (2015). "Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response?". Gastroenterology Research and Practice. 2016: 9251375. doi:10.1155/2016/9251375. PMC 4802022. PMID 27051417.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  72. Tang J, Shalabi A, Hubbard-Lucey VM (January 2018). "Comprehensive analysis of the clinical immuno-oncology landscape". Annals of Oncology. 29 (1): 84—91. doi:10.1093/annonc/mdx755. PMID 29228097.
  73. Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM (March 2018). "Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity". The Journal of Experimental Medicine. 215 (3): 877—93. doi:10.1084/jem.20171435. PMC 5839759. PMID 29436395.
  74. Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R (21 May 2018). "TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy". Nature Biomedical Engineering. 2 (8): 578—588. doi:10.1038/s41551-018-0236-8. PMID 31015631.


См. также