Геометрическая теория групп

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).

Геометрическая теория групп, как отдельная ветвь математики, появилась сравнительно недавно, и стала чётко выделяться в конце 1980-х-начале 1990-х. Геометрическая теория групп взаимодействует с маломерной топологией, гиперболической геометрией, алгебраической топологией, вычислительной теорией групп. Также она связана с теорией сложности, математической логикой, исследованием групп Ли и их дискретных подгрупп, динамическими системами, теорией вероятности, K-теорией, и другими областями математики.

История[править | править вики-текст]

Первым результатом в геометрическая теория групп следует считать теорему Громова о группах полиномиального роста. В доказательстве впервые используется так называемая сходимость по Громову — Хаусдорфу.

Тем не менее основной шаг в формировании геометрической теория групп был сделан в статье Громова о гиперболических группах.[1] Приведённое в этой статье определение гиперболической группы дало наглядную геометрическую интерпретацию теории групп с малыми сокращениями (англ.).

Примечания[править | править вики-текст]

  1. Громов М. Гиперболические группы. — Ижевск: Институт компьютерных исследований, 2002. — 160 с. — ISBN 5-93972-103-6.

Литература[править | править вики-текст]