Задача о восьми ферзях

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Задача о восьми ферзях.
Одно из решений: a7, b4, c2, d8, e6, f1, g3, h5:(87)

Зада́ча о восьми́ фе́рзя́х — широко известная задача по расстановке фигур на шахматной доске. Исходная формулировка: «Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого». Подразумевается, что ферзь бьёт все клетки, расположенные по вертикалям, горизонталям и обеим диагоналям. Обобщение задачи — расставить максимальное количество взаимно не бьющих друг друга ферзей на прямоугольном поле, в частности, квадратном поле, со стороной n.

Формулировка[править | править код]

В более «математическом» виде задача может быть сформулирована несколькими способами, например, так: «Заполнить матрицу размером 8×8 нулями и единицами таким образом, чтобы сумма всех элементов матрицы была равна 8, при этом сумма элементов ни в одном столбце, строке или диагональном ряде матрицы не превышала единицы».

Конечная цель, поставленная перед решающим задачу, может формулироваться в нескольких вариантах:

  • Построить одно, любое решение задачи.
  • Аналитически доказать, что решение существует.
  • Определить количество решений.
  • Построить все возможные решения.
  • Одна из типовых задач по программированию алгоритмов перебора: создать компьютерную программу, находящую все возможные решения задачи.

Иногда постановка задачи требует нахождения способов расстановки N ферзей на доске N×N клеток (при этом при 1<N<4 задача не имеет решения).

Особенности решения[править | править код]

Общее число возможных расположений 8 ферзей на 64-клеточной доске равно 4 426 165 368 = (64!/(8!(64-8)!)). Общее число возможных расположений, удовлетворяющих условию задачи, равно 92. Интересно отметить, что эти 92 расположения разбиваются на 12 групп: 11 групп по 8 и одну из 4 расположений. Положения внутри групп получаются из одного положения путём преобразований симметрии: отражения от вертикальной и горизонтальной осей, отражения от диагоналей доски и поворотов на 90, 180 и 270 градусов. Пары расположений, симметричные относительно горизонтальной оси, имеют сумму номеров равную 93, то есть для каждой группы эта сумма равна 93×4.

Современные компьютеры уже позволяют произвести решение задачи (нахождение любого или всех решений) путём прямого перебора всех возможных вариантов расстановки, но обычно такое решение считается некорректным, и от решающего задачу требуется найти алгоритм, который позволял бы существенно сократить объём перебора. Например, очевидно, что на одной горизонтали или вертикали доски не может находиться больше одного ферзя, поэтому алгоритм решения изначально не должен включать в перебор позиции, где два ферзя стоят на одной горизонтали или вертикали. Даже такое простое правило способно существенно уменьшить число возможных расположений: 16 777 216 (то есть 88) вместо 4 426 165 368. Генерируя перестановки, которые являются решениями задачи о восьми ладьях и затем проверяя атаки по диагоналям, можно сократить число возможных расположений всего до 40 320 (то есть 8!). Однако, если условие нападения по диагонали учитывать при генерации позиций, скорость счёта возрастает на порядок.

Один из типовых алгоритмов решения задачи — использование поиска с возвратом: первый ферзь ставится на первую горизонталь, затем каждый следующий пытаются поставить на следующую так, чтобы его не били ранее установленные ферзи. Если на очередном этапе постановки свободных полей не оказывается, происходит возврат на шаг назад — переставляется ранее установленный ферзь.

Примечания[править | править код]

Ссылки[править | править код]