Поворот

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Поворот фигуры в плоскости относительно точки O против часовой стрелки

Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.

Вращение плоскости (пространства) называется собственным (вращение первого рода) или несобственным (вращение второго рода) в зависимости от того, сохраняет оно или нет ориентацию плоскости (пространства). Часто под термином вращение понимают собственное вращение. Главной особенностью несобственного вращения является то, что оно отображает все элементы пространства, кроме неподвижных, в удалённые, т.е. не является непрерывным относительно метрики пространства.

Для двумерной плоскости можно дать другое, эквивалентное, определение вращения: вращение плоскости это движение, при котором каждый луч, исходящий из данной точки поворачивается на один и тот же угол в одном и том же направлении.

В физике (механике) нередко поворотом называется неполное вращение, или, наоборот, вращение рассматривается как частный вид поворота[уточнить]. Последнее определение более строго, поскольку понятие поворот охватывает значительно более широкую категорию движений, в том числе и такое, при котором траектория движущегося тела в избранной системе отсчёта представляет собой незамкнутую кривую.[уточнить]

Связанные определения[править | править код]

Неподвижная точка называется центром вращения, неподвижная прямая называется осью вращения и т. д.

Несобственное вращение[править | править код]

Несобственное вращение (т.е. вращение, которое не сохраняет ориентацию) нельзя сделать малым (в смысле расстояния между каждой точкой и её образом), собственное — можно сделать сколь угодно малым для любой ограниченной области пространства (то есть можно подобрать для ограниченной области сколь угодно малое собственное вращение).Это и означает, что оно не является непрерывным. Несобственное вращение является композицией некоторого зеркального отражения (на плоскости — осевой симметрии, в пространстве нечётной размерности — центральной) и собственного вращения.

Поворот в двумерном пространстве[править | править код]

В аналитической геометрии на плоскости собственное вращение в прямоугольных декартовых координатах выражается формулами:

где  — угол поворота, а центр вращения выбран в начале координат.
При тех же условиях несобственное вращение плоскости выражается формулой

В планиметрии поворот около точки [центра] на угол поворота обозначается также , где
Поворот на угол где и отождествляется с поворотом (угол поворота на полный угол зачастую также называется оборотом).
Если углы поворотов и их сумма заключены в пределах от до то при последовательном выполнении (композиции) поворотов их углы складываются (см. также #Композиция поворотов на плоскости (комплексный вид)):

причём композиция двух поворотов обладает свойством коммутативности:

См. также Изометрия (математика)

Матричный вид[править | править код]

При использовании матричного подхода точку записывают в виде вектора, затем умножают на матрицу:

.

координаты точки, полученные вращением точки .

Векторы и имеют одинаковую размерность.

Комплексный вид[править | править код]

Точку можно вращать с помощью комплексных чисел. Множество всех этих чисел геометрически представляет собой двумерную плоскость. Точка на плоскости представлена комплексным числом .

Вращение точки на угол можно осуществить умножением , используя формулу Эйлера

что дает такой же результат,

Композиция поворотов на плоскости (комплексный вид)[править | править код]

Пусть совершается вначале поворот вокруг точки на угол , затем поворот вокруг точки на угол . И пусть точки и представлены в виде комплексных чисел вида . Положительным считается поворот против часовой стрелки. Такая композиция поворотов эквивалентна повороту на угол вокруг точки , которая вычисляется по формуле ,

где , а

Если , то композиция поворотов эквивалентна параллельному сдвигу плоскости на вектор

Свойства[править | править код]

Примечания[править | править код]

См. также[править | править код]