Замечательные пределы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:

  • Первый замечательный предел:
  • Второй замечательный предел:

Первый замечательный предел[править | править вики-текст]

Доказательство

Sinx x limit proof.svg

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат (точка O), а одна сторона совпадала с осью OX. Пусть K — точка пересечения второй стороны угла с единичной окружностью, а точка L — с касательной к этой окружности в точке . Точка H — проекция точки K на ось OX.

Очевидно, что:

(1)

(где  — площадь сектора )

(из : )

Подставляя в (1), получим:

Так как при :

Умножаем на :

Перейдём к пределу:

Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Следствия


Второй замечательный предел[править | править вики-текст]

или

Доказательство существования второго замечательного предела:

   Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где  — это целая часть x.

Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку , тогда

.

Из двух этих случаев вытекает, что для вещественного x.   

Следствия

  1. для ,


Применение[править | править вики-текст]

Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]