Бином Ньютона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

где  — биномиальные коэффициенты,  — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и исламским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число. В этом случае бином представляет собой бесконечный ряд (см. ниже).

Доказательство[править | править вики-текст]

Обобщения[править | править вики-текст]

Формула бинома Ньютона является частным случаем разложения функции в ряд Тейлора:

,

где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты этого разложения находятся по формуле:

При этом ряд

.

сходится при .

В частности, при и получается тождество

Переходя к пределу при и используя второй замечательный предел , выводим тождество

которое именно таким образом было впервые получено Эйлером.

Мультиномиальная теорема[править | править вики-текст]

Бином Ньютона может быть обобщен до полинома Ньютона — возведения в степень суммы произвольного числа слагаемых:

где  — мультиномиальные коэффициенты. Сумма берется по всем неотрицательным целым индексам , сумма которых равна n (то есть по всем композициям числа n длины m). При использовании полинома Ньютона считается, что выражения , даже если .

Мультиномиальная теорема легко доказывается либо по индукции по m, либо из комбинаторных соображений и комбинаторного смысла мультиномиального коэффициента.

При , выражая , получаем бином Ньютона.

Полные полиномы Белла[править | править вики-текст]

Пусть и ,тогда полные полиномы Белла обладают биномиальным разложением:

История[править | править вики-текст]

Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль, описавший её в XVII веке. Однако историки науки обнаружили, что формула была известна ещё китайскому математику Яну Хуэю (англ.), жившему в XIII веке, а также исламским математикам ат-Туси (XIII век) и ал-Каши (XV век). В середине XVI века, Михаэль Штифель описал биномиальные коэффициенты и также составил их таблицу до степени 18.

Исаак Ньютон около 1677 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.

В художественной литературе[править | править вики-текст]

В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном.[1]

Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая карьера.

«подумаешь, бином Ньютона! Умрет он через девять месяцев, в феврале будущего года, от рака печени в клинике Первого МГУ, в четвертой палате»

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]