Константа Миллса

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Константа Миллса A — действительное число, одна из констант в теории чисел. Константа Миллса определяется как минимальное действительное число такое, что для всех целых положительных числа

являются простыми, где  обозначает целую часть (округление вниз).

Неизвестно, является ли A рациональным числом[1].

Константа названа в честь Уильяма Миллса, доказавшего её существование в 1947 году[2] [3]. Точное значение этой константы неизвестно, однако, если предположить, что гипотеза Римана верна, то значение можно найти: A = 1,3063778838630806904686144926….[4]

Гипотеза Римана подразумевает,[неоднозначно] что существуют простые числа между кубами двух последовательных натуральных чисел.

Простые числа Миллса[править | править вики-текст]

Простые числа Миллса — это простые числа, найденные по указанной выше формуле при условии верности гипотезы Римана:[5][неоднозначно]

  • .

Есть и другой факт относительно этих чисел: если  — i-ое число в этой последовательности, то может быть найдено как наименьшее простое число, следующее за . Он может быть использован для получения оценочных неравенств на константу Миллса.

Численные вычисления[править | править вики-текст]

В 2005 году было высчитано более семи тысяч знаков A в предположении верности гипотезы Римана.[6]

Примечания[править | править вики-текст]

  1. Finch, Steven R. (2003), "Mills' Constant", Mathematical Constants, Cambridge University Press, сс. 130–133, ISBN 0-521-81805-2, <ftp://s208.math.msu.su/469000/dbcd69f8d83a96354dd49d21572c6432> .
  2. Mills, W. H. (1947), "A prime-representing function", Bulletin of the American Mathematical Society Т. 53 (6): 604, doi:10.1090/S0002-9904-1947-08849-2, <http://www.ams.org/journals/bull/1947-53-06/S0002-9904-1947-08849-2/S0002-9904-1947-08849-2.pdf> .
  3. http://www.ams.org/journals/bull/1947-53-06/S0002-9904-1947-08849-2/S0002-9904-1947-08849-2.pdf - доказательство существования константы Миллса
  4. последовательность A051021 в OEIS
  5. последовательность A051254 в OEIS
  6. Caldwell, Chris K. & Cheng, Yuanyou (2005), "Determining Mills' Constant and a Note on Honaker's Problem", Journal of Integer Sequences Т. 8 (5.4.1), <http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.html> .

Ссылки[править | править вики-текст]