Кручение (деформация)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Пример деформации кручения цилиндрического стержня
Деформация стержня прямоугольного сечения при кручении

Круче́ние — один из видов деформации тела. Возникает в том случае, если нагрузка прикладывается к телу в виде пары противоположных по направлению сил в его поперечной плоскости, точки приложения которых находятся на определённом удалении друг от друга. При этом данные силы образуют в поперечных сечениях тела единственный внутренний силовой факторкрутящий момент. Примеры кручения: пружины растяжения-сжатия, валы.

При деформации кручения смещение каждой точки тела перпендикулярно к её расстоянию от оси приложенных сил и пропорционально этому расстоянию.

Угол закручивания цилиндрического стержня в границах упругих деформаций под действием момента T может быть определён из уравнения закона Гука для случая кручения

где:

 — геометрический полярный момент инерции;
 — длина стержня;
G — модуль сдвига.

Отношение угла закручивания φ к длине называют относительным углом закручивания

Деформация кручения является частным случаем деформации сдвига.

Напряжения при кручении

[править | править код]
Распределение касательных напряжений при кручении

Вращающийся стержень, не работающий на кручение, называют валом. Стержень, используемый как упругий элемент, который работает на скручивание, называется торсионом. Касательные напряжения , возникающие в условиях кручения, определяются по формуле:

,

где r — расстояние от оси кручения.

Очевидно, что касательные напряжения достигают наибольшего значения на поверхности вала при и при максимальном крутящем моменте , то есть

,

где Wp — полярный момент сопротивления.

Это даёт возможность записать условие прочности при кручении в таком виде:

.

Используя это условие, можно или по известным силовым факторам, которые создают крутящий момент Т, найти полярный момент сопротивления и далее, в зависимости от той или иной формы, найти размеры сечения, или наоборот — зная размеры сечения, можно вычислить наибольшую величину крутящего момента, которую можно допустить в сечении, которое в свою очередь, позволит найти допустимые величины внешних нагрузок.