Непротиворечивость

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Непротиворечивость — свойство формальной системы, заключающееся в невыводимости из неё противоречия. Если отрицание какого-то предложения из системы может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Непротиворечивость системы означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто. Требование Непротиворечивости является обязательным требованием к научной и, в частности, логической теории. Противоречивая система заведомо несовершенна: наряду с истинными положениями она включает также ложные, в ней что-то одновременно и доказывается, и опровергается. Во многих системах имеет место закон Дунса Скота. В этих условиях доказуемость противоречия означает, что становится доказуемым.

Формальные системы, обладающие этим свойством, называются непротиворечивыми, или формально непротиворечивыми. В противном случае формальная система называется противоречивой, или несовместной.

Для широкого класса формальных систем, язык которых содержит знак отрицания, \neg эквивалентна свойству: «не существует такой формулы \phi\,, что \phi\, и \neg\phi обе доказуемы». Класс формул данной формальной системы называется непротиворечивым, если не всякая формула этой системы выводима из данного класса.

Формальная система называется содержательно непротиворечивой, если существует модель, в которой истинны все теоремы этой системы. Если формальная система содержательно непротиворечива, то она формально непротиворечива.

Для формальных систем, основанных на классическом исчислении предикатов, справедливо и обратное утверждение: в силу теоремы Гёделя о полноте классического исчисления предикатов, всякая такая непротиворечивая система имеет модель. Таким образом, один из способов доказательства непротиворечивости формальной системы состоит в построении модели.

Другой, так называемый метаматематический метод доказательства непротиворечивости, предложенный в начале XX в. Гильбертом, состоит в том, что утверждение о непротиворечивости некоторой формальной системы рассматривается как высказывание о доказательствах, возможных в этой системе. Теория, объектами которой являются произвольные математические доказательства, называется теорией доказательств, или метаматематикой. Примером применения метаматематического метода может служить предложенное Генценом доказательство непротиворечивости формальной системы арифметики

.

Любое доказательство непротиворечивости использует средства той или иной математической теории, а потому лишь сводит вопрос о непротиворечивости одной теории к вопросу о непротиворечивости другой. При этом говорят также, что первая теория непротиворечива относительно второй теории. Большое значение имеет вторая теорема Гёделя, которая утверждает, что непротиворечивость формальной теории, содержащей арифметику, невозможно доказать с помощью средств самой рассматриваемой теории (при условии, что эта теория действительно непротиворечива).

Наличие логической противоречивости подрывает основу рассуждения, доказательства. теории, поскольку логическая противоречивость является ахиллесовой пятой неправильного рассуждения и учения. Установление логической противоречивости теории или концепции разрушает теорию или концепцию без каких-либо дальнейших аргументов их несостоятельности[1]

Примечания[править | править исходный текст]

  1. Кондаков Н. И. Логический словарь. — М.: Наука, 1975. — С. 385.

См. также[править | править исходный текст]