Нотация Фойгта

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Нотация Фойгта — матричная форма записи симметричного тензора 4-го ранга. Впервые была предложена немецким физиком В.Фойгтом для тензора упругости в формулировке закона Гука для анизотропных материалов.

Обозначения[править | править вики-текст]

Если тензор 4-ранга обладает симметрией по первой и второй паре индексов

,
,

то его элементы могут быть записаны в виде матрицы 6x6, используя следующую подстановку индексов:

.

Например, компонента будет соответствовать элементу матрицы .

Используя те же подстановки индексов, можно записывать симметричные тензоры 2 ранга в виде 6 векторов. При таком представлении результат умножения тензоров, вообще говоря, не соответствуют результату перемножения матриц. Для того, чтобы операция тензорного умножения могла быть записана в виде умножения матриц, может потребоваться введение дополнительных множителей.

Матричная запись закона Гука[править | править вики-текст]

Закон Гука в тензорном виде имеет вид (здесь и далее используется соглашение Эйнштейна о суммировании по повторяющимся индексам):

,

где и  — тензоры напряжения и деформации. Так как эти тензоры являются симметричными, то тензор модулей упругости обладает необходимой степенью симметрии для того, чтобы его возможно было записать в матричном виде. Более того, из соотношения

,

где F — свободная энергия в случае изотермической деформации, или внутренняя энергия при адиабатической деформации, следует . Отсюда следует, что существует только 21 линейно независимая компонента тензора упругих постоянных.[1] Поэтому матрица , составленная из компонент , будет симметричной. Закон Гука может быть записан в следующем виде:

,

где индексы пробегают значения от 1 до 6, или:

В данной записи коэффициент 2 при компонентах тензора деформации , , необходим для того, чтобы матричные уравнения в точности соответствовали тензорным. Например, в законе Гука в уравнение для компоненты входит слагаемое , которое в матричной записи соответствует слагаемому .

Закон Гука может быть записан в эквивалентной тензорной форме, через тензор модулей податливости :

Тензор характеризуется той же степенью симметрии, что и . Поэтому его компоненты тоже можно записать в виде матрицы 6x6 элементов. Однако данная матрица не будет обратной к матрице .

Обратное матричное уравнение , где , выглядит следующим образом:

Примеры[править | править вики-текст]

Тензор упругости изотропного материала[править | править вики-текст]

Упругие свойства определяются 2 постоянными (в данном примере — постоянными Ламэ и )

Тензор упругости материала с гексагональной симметрией[править | править вики-текст]

Тело, обладающее гексагональной симметрией, характеризуется наличием оси симметрии (в данном случае ), при повороте вокруг которой свойства не меняются. Описывается 5 независимыми упругими постоянными.

Единичная матрица[править | править вики-текст]

Единичной матрице соответствует единичный «симметризующий» тензор :

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Фильтры на поверхностных акустических волнах (расчёт, технология и применение) = Surface wave filters: design, constructin, and use / Под ред. В. Б. Акпамбетова. — М.: Радио и связь, 1981. — С. 11. — 472 с. — 5000 экз.

Литература[править | править вики-текст]

  1. М.А. Акивис, В.В. Гольдберг. Тензорное исчисление. — М.: Наука, 1969. — 352 с.
  2. В. Новацкий. Теория упругости / пер. Б. Е. Победря. — М.: "Мир", 1975. — 871 с.
  3. Т.Д. Шермергор. Теория упругости микронеоднородных сред. — М.: "Наука", 1977. — 399 с.