Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2021 года; проверки требуют 10 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2021 года; проверки требуют 10 правок.
Способ раскрытия такого рода неопределённостей был опубликован в учебнике «Analyse des Infiniment Petits» 1696 года за авторством Гийома Лопиталя. Метод был сообщён Лопиталю в письме его первооткрывателем Иоганном Бернулли.[2]
Здесь можно применить правило Лопиталя 3 раза, но можно поступить иначе. Необходимо разделить и числитель, и знаменатель на в наибольшей степени(в нашем случае ). В этом примере получается:
Простое, но полезное следствие правила Лопиталя — признак дифференцируемости функций, состоит в следующем:
Пусть функция дифференцируема в проколотой окрестности точки , а в самой этой точке она непрерывна и имеет предел производной . Тогда функция дифференцируема и в самой точке , и (то есть, производная непрерывна в точке ).
Для доказательства достаточно применить правило Лопиталя к отношению .