Сверхпроводник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Основная статья: Сверхпроводимость

Сверхпроводникматериал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc становится равным нулю (сверхпроводимость). При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние». В настоящее время проводятся исследования в области сверхпроводимости с целью повышения температуры Tc до комнатной температуры.

История[править | править код]

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4.1 К резко падает до нуля.

Сверхпроводник наименьшего размера был создан в 2010 году на основе органического сверхпроводника (BETS)2GaCl4[1][2], где аббревиатура «BETS» означает бисэтилендитиотетраселенафульвален. Созданный сверхпроводник состоит всего из четырёх пар молекул этого вещества при общей длине образца порядка 3,76 нм.

Свойства сверхпроводников[править | править код]

В зависимости от свойств сверхпроводники делят на три группы:

Фазовый переход в сверхпроводящее состояние[править | править код]

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля теплота перехода (поглощения или выделения) из сверхпроводящего состояния в обычное равна нулю, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода.

Эффект Мейснера[править | править код]

Основная статья: Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токах внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Таблица сверхпроводников[править | править код]

В представленной ниже таблице перечислены некоторые сверхпроводники и характерные для них величины критической температуры (Tc) и предельного магнитного поля (Bc).

Название материала Критическая
температура
, К
Критическое
поле
, Тл
Год опубликования
обнаружения
сверхпроводимости
Сверхпроводники I рода
Pb (свинец) 7,26[3] 0,08[4] 1913[3]
Sn (олово) 3,69[3] 0,031[4] 1913[3]
Ta (тантал) 4,38[3] 0,083[4] 1928[3]
Al (алюминий) 1,18[3] 0,01[4] 1933[3]
Zn (цинк) 0,88[4] 0,0053[4]
W (вольфрам) 0,01[4] 0,0001[4]
Сверхпроводники 1.5 рода
Ведутся поиски по теоретической модели[5]
Сверхпроводники II рода
Nb (ниобий) 9,20[3] 0,4[4] 1930[3]
V3Ga 14,5[4] >35[4]
Nb3Sn 18,0[4] >25[4]
(Nb3Al)4Ge 20,0[4]
Nb3Ge 23[4]
GeTe 0,17[4] 0,013[4]
SrTiO3 0,2—0,4[4] >60[4]
MgB2 (Диборид магния) 39 ? 2001
H2S (сероводород) 203[6] 72[6] 2015[6]

Применение[править | править код]

  • Квантовый компьютер использует кубиты, основанные на сверхпроводниках.

См. также[править | править код]

Литература[править | править код]

  • Hirsch J.E., Maple M.B., Marsiglio F. Superconducting materials classes: Introduction and overview // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 1-8. — ISSN 09214534. — DOI:10.1016/j.physc.2015.03.002.
  • Hamlin J.J. Superconductivity in the metallic elements at high pressures // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 59-76. — ISSN 09214534. — DOI:10.1016/j.physc.2015.02.032.
  • White B.D., Thompson J.D., Maple M.B. Unconventional superconductivity in heavy-fermion compounds // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 246-278. — ISSN 09214534. — DOI:10.1016/j.physc.2015.02.044.
  • Kubozono Yoshihiro, Goto Hidenori, Jabuchi Taihei, Yokoya Takayoshi, Kambe Takashi, Sakai Yusuke, Izumi Masanari, Zheng Lu, Hamao Shino, Nguyen Huyen L.T., Sakata Masafumi, Kagayama Tomoko, Shimizu Katsuya. Superconductivity in aromatic hydrocarbons // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 199-205. — ISSN 09214534. — DOI:10.1016/j.physc.2015.02.015.
  • Griveau Jean-Christophe, Colineau Éric. Superconductivity in transuranium elements and compounds // Comptes Rendus Physique. — 2014. — Vol. 15. — P. 599-615. — ISSN 16310705. — DOI:10.1016/j.crhy.2014.07.001.

Примечания[править | править код]

  1. K. Clark, A. Hassanien, S. Khan, K.-F. Braun, H. Tanaka and S.-W. Hla. Superconductivity in just four pairs of (BETS)2GaCl4 molecules (англ.) // Nature Nanotechnology. — 2010. — Vol. 5. — P. 261—265.
  2. Юрий Ерин. Создан сверхпроводник, состоящий всего из 8 молекул вещества. Элементы.ру (19 апреля 2010). Дата обращения 19 апреля 2010. Архивировано 26 августа 2011 года.
  3. 1 2 3 4 5 6 7 8 9 10 В. Л. Гинзбург, Е. А. Андрюшин. Глава 1. Открытие сверхпроводимости // Сверхпроводимость. — 2-е издание, переработанное и дополненное. — Альфа-М, 2006. — 112 с. — 3000 экз. — ISBN 5-98281-088-6.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Сверхпроводник — статья из Большой советской энциклопедии
  5. Физики представили теорию полуторной сверхпроводимости
  6. 1 2 3 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system // Nature. — Т. 525, вып. 7567. — С. 73–76. — DOI:10.1038/nature14964.