Арифметическая прогрессия: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 1: Строка 1:
{{Значения|Прогрессия}}
{{Значения|Прогрессия}}
'''Арифмети́ческая прогрессия''' — [[числовая последовательность]] вида
'''Арифмети́ческая прогре́ссия''' — [[числовая последовательность]] вида
: <math>a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots</math>,
: <math>a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots</math>,
то есть последовательность чисел ('''членов''' прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа <math>d</math> ('''шага''', или '''разности''' прогрессии):
то есть последовательность чисел ('''членов''' прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа <math>d</math> ('''шага''', или '''разности''' прогрессии):
Строка 7: Строка 7:
: <math>a_n=a_1 + (n-1)d</math>
: <math>a_n=a_1 + (n-1)d</math>


Арифметическая прогрессия является [[монотонная последовательность|'''монотонной последовательностью''']]. При <math>d>0</math> она является возрастающей, а при <math>d<0</math> — убывающей. Если <math>d=0</math>, то последовательность будет стационарной. Эти утверждения следуют из соотношения <math>a_{n+1}-a_n=d</math> для членов арифметической прогрессии.
Арифметическая прогрессия является '''[[монотонная последовательность|монотонной последовательностью]]'''. При <math>d>0</math> она является возрастающей, а при <math>d<0</math> — убывающей. Если <math>d=0</math>, то последовательность будет стационарной. Эти утверждения следуют из соотношения <math>a_{n+1}-a_n=d</math> для членов арифметической прогрессии.


== Свойства ==
== Свойства ==
Строка 26: Строка 26:
<math>a_4=a_3+d=a_1+2d+d=a_1+3d</math>
<math>a_4=a_3+d=a_1+2d+d=a_1+3d</math>


<math>a_5=a_4+d=a_1+3d+d=a_1+4d</math>

Заметив закономерность, делаем предположение, что <math>a_n=a_1+(n-1)d</math>. С помощью [[Математическая индукция|математической индукции]] покажем, что предположение верно для всех <math>n \in \mathbb N</math>:

'''База''' индукции <math>(n=1)</math> :


<math>a_1=a_1+(1-1)d=a_1</math> — утверждение истинно.
<math>a_1=a_1+(1-1)d=a_1</math> — утверждение истинно.
Строка 77: Строка 82:
Сумма первых <math>n</math> членов арифметической прогрессии <math>S_n=\sum_{i=1}^n a_i=a_1+a_2+ \ldots + a_n</math> может быть найдена по формулам
Сумма первых <math>n</math> членов арифметической прогрессии <math>S_n=\sum_{i=1}^n a_i=a_1+a_2+ \ldots + a_n</math> может быть найдена по формулам
: <math>S_n=\frac{a_1+a_n}2 \cdot n</math> , где <math>a_1</math> — первый член прогрессии, <math>a_n</math> — член с номером <math>n</math>, <math>n</math> — количество суммируемых членов.
: <math>S_n=\frac{a_1+a_n}2 \cdot n</math> , где <math>a_1</math> — первый член прогрессии, <math>a_n</math> — член с номером <math>n</math>, <math>n</math> — количество суммируемых членов.
: <math>S_n=\frac{a_1+a_n}2 \cdot (\frac{a_n-a_1}{a_2-a_1}+1)</math> где <math>a_1</math> — первый член прогрессии, <math>a_2</math> — второй член прогрессии <math>, a_n</math> — член с номером <math>n</math>.
: <math>S_n=\frac{a_1+a_n}2 \cdot (\frac{a_n-a_1}{a_2-a_1}+1)</math> — где <math>a_1</math> — первый член прогрессии, <math>a_2</math> — второй член прогрессии <math>, a_n</math> — член с номером <math>n</math>.
: <math>S_n=\frac{2a_1+d(n-1)}2 \cdot n</math> , где <math>a_1</math> — первый член прогрессии, <math>d</math> — разность прогрессии, <math>n</math> — количество суммируемых членов.
: <math>S_n=\frac{2a_1+d(n-1)}2 \cdot n</math> , где <math>a_1</math> — первый член прогрессии, <math>d</math> — разность прогрессии, <math>n</math> — количество суммируемых членов.
{| class="wikitable collapsible collapsed" width=100%
{| class="wikitable collapsible collapsed" width=100%
Строка 109: Строка 114:


=== Сходимость арифметической прогрессии ===
=== Сходимость арифметической прогрессии ===
Арифметическая прогрессия расходится при <math>d\ne 0</math> и [[Предел последовательности|сходится]] при <math>d=0</math>. Причём
Арифметическая прогрессия <math>a_1, a_2, a_3, \ldots</math> расходится при <math>d\ne 0</math> и [[Предел последовательности|сходится]] при <math>d=0</math>. Причём


: <math>\lim_{n\rightarrow\infty} a_n=\left\{ \begin{matrix} +\infty,\ d>0 \\ -\infty,\ d<0 \\ a_1,\ d=0 \end{matrix} \right.</math>
: <math>\lim_{n\rightarrow\infty} a_n=\left\{ \begin{matrix} +\infty,\ d>0 \\ -\infty,\ d<0 \\ a_1,\ d=0 \end{matrix} \right.</math>
Строка 120: Строка 125:


=== Связь между арифметической и геометрической прогрессиями ===
=== Связь между арифметической и геометрической прогрессиями ===

Пусть <math>a_1, a_2, a_3, \ldots</math> — арифметическая прогрессия с разностью <math>d</math> и число <math>a>0</math>. Тогда последовательность вида <math>a^{a_1}, a^{a_2}, a^{a_3}, \ldots</math> есть [[геометрическая прогрессия]] со знаменателем <math>a^d</math>.
Пусть <math>a_1, a_2, a_3, \ldots</math> — арифметическая прогрессия с разностью <math>d</math> и число <math>a>0</math>. Тогда последовательность вида <math>a^{a_1}, a^{a_2}, a^{a_3}, \ldots</math> есть [[геометрическая прогрессия]] со знаменателем <math>a^d</math>.


Строка 138: Строка 142:


== Арифметические прогрессии высших порядков ==
== Арифметические прогрессии высших порядков ==

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов [[Натуральное число|натуральных чисел]]:
Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов [[Натуральное число|натуральных чисел]]:


Строка 159: Строка 162:
: <math>\sum_{i=1}^n i=1+2+3+\ldots+n=\frac{n(n+1)}2</math>
: <math>\sum_{i=1}^n i=1+2+3+\ldots+n=\frac{n(n+1)}2</math>


== Формула для разности ==
== Дополнительные формулы ==
Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

: <math>\mathit{d=\frac{a_m-a_n}{m-n}}</math>.
=== Нахождение разности <math>\mathit{d}</math> арифметической прогрессии,если известны члены этой прогрессии, отличающиеся на разность их номеров ===
Пусть нам будут известны значения двух членов из некой числовой последовательности,например:

<math>\mathit{a_n=\alpha}</math> и <math>\mathit{a_m=\beta}</math> , где <math>\mathit{n} </math> и <math>\mathit{m}</math> - номера членов некой числовой последовательности.

Так как члены последовательности не являются соседними,то найдем насколько член <math>\mathit{a_m}</math>опережает <math>\mathit{a_n}</math>на некое количество номеров ,то есть найдем разность этих номеров:

<math>\mathit{m-n=k}</math> ,где <math>\mathit{k}</math> - разность номеров двух членов

Теперь найдем разность самих членов последовательности:

<math>\mathit{a_m-a_n=\beta-\alpha=p}</math> ,где <math>\mathit{p}</math> - разность двух членов

Последний шаг - найти частное этих двух разностей,а именно:

<math>\mathit{d=\frac{k}{p}}</math> ,где <math>\mathit{d}</math> - разность арифметической прогрессии.

В конечном итоге мы получаем формулу:

<math>\mathit{d=\frac{a_m-a_n}{m-n}}</math>


== Занимательная история ==
== Занимательная история ==
Согласно легенде, школьный учитель математики юного [[Гаусс,_Карл_Фридрих|Гаусса]], чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Согласно легенде, школьный учитель математики юного [[Гаусс, Карл Фридрих|Гаусса]], чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050.
Действительно, легко видеть, что решение сводится к формуле
Действительно, легко видеть, что решение сводится к формуле
: <math>\frac{n(n+1)}2</math>
: <math>\frac{n(n+1)}2</math>
Строка 199: Строка 183:


== Литература ==
== Литература ==

* {{книга
* {{книга
| автор = [[Бронштейн, Илья Николаевич|Бронштейн И. Н.]], [[Семендяев, Константин Адольфович|Семендяев К. А.]]
| автор = [[Бронштейн, Илья Николаевич|Бронштейн И. Н.]], [[Семендяев, Константин Адольфович|Семендяев К. А.]]

Версия от 14:36, 8 марта 2020

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага, или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формуле

где  — первый член прогрессии,  — её разность.

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для любого её элемента выполняется условие .

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
 — где  — первый член прогрессии,  — второй член прогрессии  — член с номером .
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причём

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если  — арифметическая прогрессия порядка , то существует многочлен , такой, что для всех выполняется равенство [1]

Примеры

  • Натуральный ряд  — это арифметическая прогрессия, в которой первый член , а разность .
  •  — первые 5 членов арифметической прогрессии, в которой и .
  • Если все элементы некоторой последовательности равны между собой и равны некоторому числу , то это есть арифметическая прогрессия, в которой и . В частности, есть арифметическая прогрессия с разностью .
  • Сумма первых натуральных чисел выражается формулой

Формула для разности

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

.

Занимательная история

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050. Действительно, легко видеть, что решение сводится к формуле

то есть к формуле суммы первых чисел натурального ряда.

См. также

Ссылки

  • Арифметическая прогрессия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890. — Т. II. — С. 98.

Примечания

Литература