Теорема Кантора — Бернштейна

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Cantor-Bernstein.jpg

Теорема Кантора — Бернштейна (в англ. литературе теорема Кантора — Бернштейна — Шрёдера), утверждает, что если существуют инъективные отображения и между множествами и , то существует взаимооднозначное отображение . Другими словами, что мощности множеств и совпадают:

Другими словами, теорема утверждает следующее:

Из и следует, что где  — кардинальные числа.

История[править | править код]

Теорема названа в честь Георга Кантора, Феликса Бернштейна и Эрнста Шрёдера.

Первоначальное доказательство использовало аксиому выбора, однако эта аксиома необязательна для доказательства данной теоремы.

Эрнст Шрёдер первым сформулировал теорему, но опубликовал неправильное доказательство. Независимо эта теорема была сформулирована Кантором. Ученик Кантора Феликс Бернштейн опубликовал диссертацию, содержащую полностью корректное доказательство.

Доказательство[править | править код]

Пусть

и

при

и

Тогда, для любого положим

Если не лежит в , тогда должен быть в (образе множества под действием отображения ). И тогда существует , и отображение.

Осталось проверить, что  — биекция.

Проверим, что h — сюрьекция.

Нужно доказать, что

Если , то . Тогда


Пусть . Предположим, . Тогда , при , значит ,
, так как  — инъекция, то , что противоречит предположению.
Значит . Тогда

Проверим, что h — инъекция.

Нужно доказать, что


( — инъекция)






Значит этот случай невозможен.

Замечание[править | править код]

Определение отображения выше неконструктивно, то есть не существует алгоритма определения за конечное число шагов, лежит ли некоторый элемент множества в множестве или нет. Хотя для некоторых частных случаев такой алгоритм существует.

См. также[править | править код]

Литература[править | править код]

  • Ершов Ю. Л., Палютин Е. А. Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб.: «Лань», 2004. — 336 с.