Биекция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Биективная функция.

Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно-однозначным отображением (соответствием), одно-однозначным отображением.

Если между двумя множествами можно установить взаимно-однозначное соответствие (биекцию), то такие множества называются равномощными. С точки зрения теории множеств, равномощные множества неразличимы.

Взаимно-однозначное отображение конечного множества в себя называется перестановкой (элементов этого множества).

Определение[править | править вики-текст]

Функция называется биекцией (и обозначается ), если она:

  1. Переводит разные элементы множества в разные элементы множества (инъективность). Иными словами,
    • .
  2. Любой элемент из имеет свой прообраз (сюръективность). Иными словами,
    • .


Примеры[править | править вики-текст]

  • Тождественное отображение  на множестве биективно.
  •  — биективные функции из в себя. Вообще, любой моном одной переменной нечетной степени является биекцией из в себя.
  •  — биективная функция из в .
  • не является биективной функцией, если считать её определённой на всём .

Свойства[править | править вики-текст]

Композиция инъекции и сюръекции, дающая биекцию.
  • Функция является биективной тогда и только тогда, когда существует обратная функция такая, что
и
  • Если функции и биективны, то и композиция функций биективна, в этом случае . Коротко: композиция биекций является биекцией. Обратное, однако, неверно: если биективна, то мы можем утверждать лишь, что инъективна, а сюръективна.

Применения[править | править вики-текст]

В информатике[править | править вики-текст]

Организация связи «один к одному» между таблицами реляционной БД на основе первичных ключей.

Примечания[править | править вики-текст]

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Н. К. Верещагин, А. Шень. Часть 1. Начала теории множеств // Лекции по математической логике и теории алгоритмов. — 2-е изд., испр. — М.: МЦНМО, 2002. — 128 с.
  • Ершов Ю. Л., Палютин Е. А.  Математическая логика: Учебное пособие. — 3-е, стереотип. изд. — СПб: Лань, 2004. — 336 с.