Функция Дирихле

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Графическое представление функции Дирихле: две параллельные и, казалось бы, сплошные линии. Синяя (или красная) линия представляет собой рациональные (или иррациональные) числа, плотно расположенные в вещественных числах

Функция Дирихле́ — функция, принимающая единицу на рациональных значениях и ноль — на иррациональных, стандартный пример всюду разрывной функции. Введена в 1829 году немецким математиком Дирихле.[1]

Определение[править | править код]

Символически, функция Дирихле определяется следующим образом:[2]

Свойства[править | править код]

Принадлежит второму классу Бэра, то есть её нельзя представить как (поточечный) предел последовательности непрерывных функций, но можно представить как повторный предел последовательности непрерывных функций[3][4]:

.

Каждая точка в области определения является точкой разрыва второго рода (причём существенного).[5]

Является периодической функцией, её периодом является любое рациональное число, не равное нулю; основного периода функция не имеет.[6]

Не является интегрируемой в смысле Римана.[7] Простая функция; измерима по отношению к мере Лебега; интеграл Лебега от функции Дирихле на любом числовом промежутке равен нулю, это следует из того, что мера Лебега множества рациональных чисел равна нулю.

Вариации и обобщения[править | править код]

Вариацией функции Дирихле является функция Римана, называемая также «функцией Тома» (Thomae).

Примечания[править | править код]

  1. Ferreiros, 2013, с. 150.
  2. Фихтенгольц, 2003, с. 115.
  3. Dunham, 2005, с. 197.
  4. Рудин, 1976, с. 162 Пример 7.5.
  5. Зорич, 2019, с. 145.
  6. encyclopediamath, comment.
  7. Никольский, 1983, с. 357.

Литература[править | править код]

  • Jose Ferreiros. Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. — 2013. — 440 с.
  • Г.М. Фихтенгольц. Курс дифференциального и интегрального исчисления. — 8-е изд.. — Физматлит, 2003. — Т. 1.
  • С.М. Никольский. Курс математического анализа. — Москва: «Наука», Главная редакция физико-математической литературы, 1983. — Т. 1.
  • Dirichlet-function. Encyclopedia of Mathematics.
  • В. Немыцкий, М. Слудская, А. Черкасов. Курс математического анализа. — Москва, Ленинград: Государственное издательство технико-теоретической литературы, 1940. — Т. 1.
  • William Dunham. The Calculus Gallery. — Princeton University Press, 2005. — ISBN 0-691-09565-5.
  • У. Рудин. Основы математического анализа. — Москва: «Мир», 1976.
  • В. А. Зорич. Математический анализ. Часть 1. — 10-е изд., исправленное. — Москва: МЦНМО, 2019.

Ссылки[править | править код]