Эффект Джанибекова

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теоре́ма те́ннисной раке́тки, или теоре́ма промежу́точной оси́, является следствием законов классической механики, описывающих движение твёрдого тела с тремя различными главными моментами инерции. Это явление чаще называют эффектом Джанибекова, в честь советского космонавта Владимира Джанибекова, который заметил это явление, находясь в космосе в 1985 году[1]. Статья, объясняющая эффект, была опубликована в 1991 году[2]. В то же время сама теорема о неустойчивости вращения вокруг промежуточной оси инерции известна давно и доказывается в любом курсе классической механики[3], неустойчивость такого вращения часто демонстрируется в лекционных экспериментах.

Теорема описывает следующий эффект: вращение объекта относительно главных осей с наибольшим и наименьшим моментами инерции является устойчивым, в то время как вращение вокруг главной оси с промежуточным моментом инерции (откуда и название теорема промежуточной оси) — нет. Джанибеков увидел это с гайкой-барашком: скрутив её в невесомости с длинной шпильки, он заметил, что она пролетает немного, разворачивается на 180°, потом, ещё немного пролетев, опять разворачивается.

На Земле этот эффект можно увидеть на таком эксперименте: возьмите за ручку теннисную ракетку и попытайтесь подбросить её в воздух так, чтобы она выполнила полный оборот вокруг оси, проходящей в плоскости ракетки перпендикулярно рукоятке, и поймайте за ручку. Почти во всех случаях ракетка выполнит пол-оборота вдоль продольной оси и будет «смотреть» на вас другой стороной. Если подбрасывать ракетку и закручивать её по другим осям, то ракетка сохранит свою ориентацию после полного оборота.

Эксперимент может быть выполнен с любым объектом, который имеет три различных момента инерции, например с книгой или пультом дистанционного управления. Эффект возникает, когда ось вращения немного отличается от второй главной (принципиальной) оси объекта; сопротивлением воздуха или гравитацией можно смело пренебречь[4].

Математическое обоснование[править | править вики-текст]

Теорема теннисной ракетки может быть проанализирована с помощью уравнений Эйлера.

При свободном вращении они принимают следующую форму:

Здесь обозначают главные моменты инерции, и мы предполагаем, что . Угловые скорости трёх главных осей — , их производные по времени — .

Рассмотрим ситуацию, когда объект вращается вокруг оси с моментом инерции . Для определения характера равновесия, предположим, что существуют две малые начальные угловые скорости вдоль других двух осей. В результате, согласно уравнению (1), очень мала. Следовательно, зависимостью от времени можно пренебречь.

Теперь дифференцируем уравнение (2) и подставим из уравнения (3):

Обратим внимание, что знаки у и разные. Следовательно, изначально малая скорость будет оставаться малой и в дальнейшем. Дифференцируя уравнение (3), можно доказать и устойчивость относительно возмущения . Поскольку обе скорости и остаются малыми, малой остаётся и . Поэтому вращение вокруг оси 1 происходит с постоянной скоростью.

Аналогичное рассуждение показывает, что вращение вокруг оси с моментом инерции тоже устойчиво.

Теперь применим эти рассуждения к случаю вращения относительно оси с моментом инерции . В этот раз очень мала. Следовательно, зависимостью от времени можно пренебречь.

Теперь дифференцируем уравнение (1) и подставим из уравнения (3):

Обратим внимание, что знаки у и одинаковые. Следовательно, изначально малая скорость будет экспоненциально нарастать до тех пор, пока не перестанет быть малой и характер вращения вокруг оси 2 не изменится. Таким образом, даже небольшие возмущения вдоль других осей заставляют объект «переворачиваться».

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Эффект Джанибекова - Форумы CNews. live.cnews.ru. Проверено 26 марта 2016.
  2. Mark S. Ashbaugh, Carmen C. Chicone, Richard H. Cushman (1991). «The Twisting Tennis Racket». Journal of Dynamics and Differential Equations 3 (1): 67—85. DOI:10.1007/BF01049489.
  3. См., например: Сивухин Д. В. § 53, Тензор и эллипсоид инерции; § 54, Вращение твердого тела по инерции вокруг неподвижной точки // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 297—300. — 520 с.
  4. Mark Levi. 6. The tennis racket paradox // Classical Mechanics with Calculus of Variations and Optimal Control: An Intuitive Introduction. — American Mathematical Society, 2014. — P. 151-152.

Ссылки[править | править вики-текст]