Окрестность: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м Updated image to svg format
м →‎Общая топология: оформление
Строка 22: Строка 22:
=== Общая топология ===
=== Общая топология ===


* Пусть задано [[топологическое пространство]] <math>(X,\mathcal{T})</math>, где <math>X</math> — произвольное [[множество]], а <math>\mathcal{T}</math> — определённая на <math>X</math> [[топология]]. Множество <math>V \subset X</math> называется окрестностью точки <math>x\in X</math>, если существует [[открытое множество]] <math>U\in \mathcal{T}</math> такое, что <math>x \in U \subset V</math>.
Пусть задано [[топологическое пространство]] <math>(X,\mathcal{T})</math>, где <math>X</math> — произвольное [[множество]], а <math>\mathcal{T}</math> — определённая на <math>X</math> [[топология]].
* Множество <math>V \subset X</math> называется окрестностью точки <math>x\in X</math>, если существует [[открытое множество]] <math>U\in \mathcal{T}</math> такое, что <math>x \in U \subset V</math>.


* Аналогично окрестностью множества <math>M \subset X</math> называется такое множество <math>V \subset X</math>, что существует открытое множество <math>U\in \mathcal{T}</math>, для которого выполнено <math>M \subset U \subset V</math>.
* Аналогично окрестностью множества <math>M \subset X</math> называется такое множество <math>V \subset X</math>, что существует открытое множество <math>U\in \mathcal{T}</math>, для которого выполнено <math>M \subset U \subset V</math>.

Версия от 12:55, 17 мая 2017

На плоскости подмножество является окрестностью точки , если вокруг точки можно нарисовать небольшой диск, который будет целиком содержаться в .
Прямоугольник не может являться окрестностью своих вершин.

Окре́стность точки — множество, содержащее данную точку, и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.

Определения

Математический анализ

Пусть произвольное фиксированное число.

Окрестностью точки на числовой прямой (иногда говорят -окрестностью) называется множество точек, удаленных от менее чем на , то есть .

В многомерном случае функцию окрестности выполняет открытый -шар с центром в точке .

В банаховом пространстве окрестностью с центром в точке называют множество .

В метрическом пространстве окрестностью с центром в точке называют множество .

Общая топология

Пусть задано топологическое пространство , где  — произвольное множество, а  — определённая на топология.

  • Множество называется окрестностью точки , если существует открытое множество такое, что .
  • Аналогично окрестностью множества называется такое множество , что существует открытое множество , для которого выполнено .

Замечания

  • Приведённые выше определения не требуют, чтобы окрестность была открытым множеством, но лишь чтобы она содержала открытое множество . Некоторые авторы настаивают на том, что любая окрестность открыта.[1] Тогда окрестностью множества называется любое содержащее его открытое множество. Это не принципиальное для развития дальнейшей топологической теории различие. Однако в каждом случае важно фиксировать терминологию.
  • Окрестностью множества точек называется такое множество , что есть окрестность любой точки .

Пример

Пусть дана вещественная прямая со стандартной топологией. Тогда является открытой окрестностью, а  — замкнутой окрестностью точки .

Вариации и обобщения

Проколотая окрестность

Проколотой окрестностью точки называется окрестность точки, из которой исключена эта точка.

Строго говоря, проколотая окрестность не является окрестностью точки, так как согласно определению окрестности окрестность должна включать и саму точку.

Формальное определение: Множество называется проко́лотой окре́стностью (вы́колотой окрестностью) точки , если

где  — окрестность .

См. также

Примечания

  1. Рудин, 1975, с. 13.

Литература

  • Математическая Энциклопедия. — М.: Советская Энциклопедия, 1984. — Т. 4.
  • У.Рудин. Функциональный анализ. — М.: Мир, 1975.