Вызванный потенциал: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
→‎Типы ВВП: Добавлено начало раздела Аудио вызванный потенциал.
Метки: с мобильного устройства из мобильной версии через расширенный мобильный режим
→‎Аудио вызванный потенциал: Завершение раздела Аудио вызванный потенциал.
Метки: с мобильного устройства из мобильной версии через расширенный мобильный режим
Строка 94: Строка 94:
=== Аудио вызванный потенциал ===
=== Аудио вызванный потенциал ===
Аудио вызванные потенциалы (АВП; англ. AEP) могут использоваться для отслеживания сигнала, генерируемого звуком, по восходящему слуховому пути. Вызванный потенциал генерируется в улитке, проходит через [[слуховой нерв]], {{не переведено|:en: cochlear nucleus| улитковые ядра| улитковые ядра}}, {{не переведено|:en: superior olivary complex | верхний оливковый комплекс | верхний оливковый комплекс}}, [[Латеральная петля| латеральную петлю]], [[нижнее двухолмие]] в среднем мозге, [[медиальное коленчатое тело]] и, наконец, достигает [[слуховая кора|кору]].<ref>{{cite book|author1=Musiek, FE|author2=Baran, JA|lastauthoramp=y|year=2007|title=The Auditory system|location=Boston, MA|publisher=Pearson Education, Inc.}}</ref>
Аудио вызванные потенциалы (АВП; англ. AEP) могут использоваться для отслеживания сигнала, генерируемого звуком, по восходящему слуховому пути. Вызванный потенциал генерируется в улитке, проходит через [[слуховой нерв]], {{не переведено|:en: cochlear nucleus| улитковые ядра| улитковые ядра}}, {{не переведено|:en: superior olivary complex | верхний оливковый комплекс | верхний оливковый комплекс}}, [[Латеральная петля| латеральную петлю]], [[нижнее двухолмие]] в среднем мозге, [[медиальное коленчатое тело]] и, наконец, достигает [[слуховая кора|кору]].<ref>{{cite book|author1=Musiek, FE|author2=Baran, JA|lastauthoramp=y|year=2007|title=The Auditory system|location=Boston, MA|publisher=Pearson Education, Inc.}}</ref>

Аудио вызванные потенциалы (АВП, англ. AEO) являются подклассом [[потенциал, связанный с событием| потенциалов, связанных с событиями]] (ПСС; англ. ERP). ПСС - это реакции мозга, привязанные ко времени и некоторому «событию», такому как сенсорный стимул, психическое событие (такое как распознавание целевого стимула) или пропуск стимула. Для АВП «событие» - это звук. АВП (и ПСС) представляют собой очень малые потенциалы электрического напряжения мозга, которые регистрируются на скальпе в ответ на слуховой раздражитель, такой как различные тоны, речевые звуки и т. д.

{{не переведено|:en: Brainstem auditory evoked potential |Стволовые аудио ВП|Стволовые аудио ВП}} (САВП )- это небольшие АВП, являющиеся откликами на звуковой стимул, регистрируемых с помощью электродов, размещенных на скальпе.

АВП используются для оценки функционирования [[Слуховая сенсорная система|слуховой системы]] и [[Нейропластичность|нейропластичности]].<ref name="Kumar2016">{{cite journal | last=Sanju | first=Himanshu Kumar | last2=Kumar | first2=Prawin | title=Enhanced auditory evoked potentials in musicians: A review of recent findings | journal=Journal of Otology | volume=11 | issue=2 | year=2016 | issn=1672-2930 | pmid=29937812 | pmc=6002589 | doi=10.1016/j.joto.2016.04.002 | pages=63–72}}</ref>
Их можно использовать для диагностики нарушений обучаемости у детей, а также в разработке специализированных образовательных программ детей с проблемами со слухом или когнитивными функциями. <ref>{{cite journal|title=Auditory evoked potential: a proposal for further evaluation in children with learning disabilities|first1=Ana C. F.|last1=Frizzo|journal=Frontiers in Psychology|doi=10.3389/fpsyg.2015.00788|date=10 June 2015|volume=6|page=788|pmid=26113833|pmc=4461809}}</ref>


== Специфические техники и виды ПСС ==
== Специфические техники и виды ПСС ==

Версия от 17:02, 4 марта 2020

Вызванный потенциал (сокр. ВП) - это электрический потенциал определённого вида, записанный из определенной части нервной системы, наиболее часто мозга, человека или животных после воздействия стимула, такого как вспышка света или чистый звук. Различные типы потенциалов являются результатом стимулов разных модальностей и типов.[1] ВП отличается от спонтанных потенциалов, обнаруживаемых с применением электроэнцефалографии (ЭЭГ), электромиографии (ЭМГ) или другого электрофизиологического метода записи. Такие потенциалы полезны для шаблон не поддерживает такой синтаксис и шаблон не поддерживает такой синтаксис, которые включают в себя обнаружение заболеваний и связанных с наркотиками, сенсорных дисфункций и интраоперационный мониторинг целостности сенсорных путей.[2]

Амплитуда вызванного потенциала в основном бывает меньше, в диапазоне от менее микровольт до нескольких микровольт, в сравнении с десятками микровольт для ЭЭГ, милливольт для ЭМГ и часто близкими к 20 милливольтам для ЭКГ. Чтобы выделить эти низкоамплитудные потенциалы на фоне текущих ЭЭГ, ЭКГ, ЭМГ и других биологических сигналов и сопутстующего шума, обычно требуется усреднение сигнала. В то время, как сигнал привязан ко времени стимула, большая часть шума имеет случайный характер, что позволяет устранять его усреднением данных, полученных в повторяющихся испытаний.[3]

Записываются и используются сигналы коры головного мозга, ствола головного мозга, спинного мозга и нервов периферической нервной системы. Обычно термин «вызванный потенциал» зарезервирован для обозначения откликов, включающих либо запись, либо стимуляцию структур центральной нервной системы. Поэтому, сложные вызванные потенциалы двигательного действия (моторные ВП - МВП; англ.: evoked compound motor action potentials - CMAP) или потенциалы сенсорного нерва (СВП; англ.: sensory nerve action potentials - SNAP)), используемые в исследования нервной проводимости (NCS), обычно не рассматриваются как вызванные потенциалы, хотя они соответствуют приведенному выше определению.

Вызванный потенциал отличается от потенциала, связанный с событием (ПСС), хотя термины иногда используются как синонимы, поскольку ПСС имеет более длительную задержку и связан с когнитивной обработкой более высокого уровня. [1][4] Термин психофизиологии[5].

Основные сведения

Вызванные потенциалов применяется для исследования функции сенсорных систем мозга (соматосенсорной - соматосенсорная система , зрения - зрительная система, слуха - слуховая сенсорная система) и систем мозга ответственных за когнитивные процессы. В основе метода лежит регистрация биоэлектрических реакций мозга в ответ на внешнее раздражение (в случае сенсорных ВП) и при выполнении когнитивной задачи (в случае когнитивных ВП). В зависимости от времени задержки (латентности) вызванного оклика после предъявления стимула ВП принято разделять на коротко-латентные (до 50 миллисекунд), средне-латентные (50-100 мс) и длинно-латентные (свыше 100 мс). Особой разновидностью ВП являются моторные вызванные потенциалы, которые регистрируются с мышц конечностей в ответ на транскраниальное электрическое или магнитное раздражение моторной зоны коры (Транскраниальная магнитная стимуляция). Моторные ВП позволяют производить оценку функции кортико-спинальных (моторных) систем мозга.

Поскольку амплитуда ВП (5-15 мкВ) гораздо меньше амплитуды ЭЭГ в состоянии бодрствования (20-70 мкВ), то для выделения ВП проводят усреднение сигнала: проведения нескольких испытаний с предъявлением одного и того же стимула, после чего осуществляется усреднение отрезки ЭЭГ, которые следуют сразу после предъявления стимула. В результате постоянные компоненты ВП суммируются и выделяются, а «случайные» составляющие ЭЭГ, наложившиеся на запись во время регистрации ВП, усредняются в 0[6][7][8] (см. Потенциал, связанный с событием#Вычисления). Следует отметить, что соотношение сигнал/шум при выделении ВП из ЭЭГ находится в прямой зависимости от квадратного корня из количества проведённых испытаний. Например, если средняя амплитуда ЭЭГ при записи ВП составляет 50 мкВ, то после 25 поданных сигналов уровень шума уменьшится до мкВ, после 50 поданных сигналов — до значения около 7 мкВ, после 100 — до 5 мкВ и т. д. Так как при получении когнитивных ВП зачастую используются несколько различных типов сигналов, то для четкого выделения ВП на конкретный тип стимула следует учитывать не общее количество поданных сигналов, а количество поданных сигналов этого типа. Рекомендуется для выделения компонентов с высокой амплитудой подавать 50-60 стимулов, со средней амплитудой — 200—300, с низкой — более 500[9].

Кроме электроэнцефалографии, для регистрации ВП используют также магнитоэнцефалографию (МЭГ)[10]. Различают зрительные (видио) ВП (ВВП), аудио ВП (АВП), соматосенсорные ВП (ССВП), потенциалы, связанные с событиями (ПСС), когнитивные ВП (КВП), которые являются частным случаем ПСС и моторные ВП (МВП).

Характеристиками вызванных потенциалов являются латентный период (латентность), амплитуда (или площадь), полярность (негативная/позитивная) и форма.

Для диагностических целей наибольшее применение получили коротколатентные аудио, соматосенсорные, видео и моторные ВП. Например, стволовые АВП (Brainstem auditory evoked potentials) используются в качестве стандартного нейрофизиологического теста для исследования поражений ствола мозга и объективной оценки нарушений слуха. Соматосенсорные и моторные ВП позволяют выявить и оценить степень нарушения функции проводящих путей спинного мозга. Зрительные ВП имеют важное значение в диагностике рассеянного склероза.

В научной практике, ВП первоначально выступали как основа для анализа реакций мозга на внешние стимулы, в дальнейшем стали использоваться и для анализа внутренне обусловленных нервных процессов. На основании данных, полученных с помощью этого метода, строятся гипотезы относительно ощущения, восприятия, внимания, интеллекта, функциональной асимметрии мозга и индивидуальной психофизиологической дифференциации. В частности, могут быть зафиксированы биоэлектрические колебания, связанные с активностью двигательной коры (моторный потенциал), с окончанием движения, с состоянием намерения произвести какое-либо действие (Е-волна), пропуска ожидаемого стимула. Форма, амплитуда и латентный период колебаний длинно-латентных вызванных потенциалов обусловлены местом локализации регистрирующего электрода, модальностью и интенсивностью стимула, состоянием и специфическими особенностями индивида.

Сенсорные вызванные потенциалы

Сенсорные вызванные потенциалы (СВП; англ.: Sensory evoked potentials - SEP) регистрируются в центральной нервной системы после стимуляции органов чувств, например, визуально вызванные потенциалы (ВВП), вызванные мигающим светом или изменяющимся рисунком на мониторе, [11] слуховые(аудио) вызванные потенциалы (АВП) с помощью щелчка или тонального стимула, представленного через наушники, или тактильный или соматосенсорно вызванный потенциал (ССВП; англ.: somatosensory evoked potential - SSEP) вызывается тактильной или электрической стимуляцией сенсорного или смешанного нерва в периферической нервной системе. Сенсорные вызванные потенциалы широко использовались в клинической диагностике медицине с 1970-х годов, а также в интраоперационном мониторинге нейрофизиологии (IONM), также известном как хирургическая нейрофизиология.

Существует три вида вызванных потенциалов широко используемые в клинических исследованиях: аудио вызванные потенциалы (АВП), обычно записываемые с кожи головы, но возникающие на уровне ствола мозга (САВП); визуально вызванные потенциалы и соматосенсорно вызванные потенциалы, которые вызываются электрической стимуляцией периферического нерва. Примеры использования СВП:[4]

  • ССВП может быть использован для обнаружения повреждений, в периферическом нерве или спинном мозге.
  • ВВП и САВП могут дополнять нейровизуализация как часть работ по диагностике таких заболеваний, как рассеянный склероз.
  • ВП с коротким временем ожидания, такие как ССВП, ВВП и САВП, могут использоваться для указания прогноза травматического и аноксического повреждения головного мозга. Ранее после аноксической повреждения головного мозга, отсутствие реакции точно указывает на смертность. При черепно-мозговой травме ненормальный ответ указывает на неспособность оправиться от комы. При обоих типах травм нормальные ответы могут указывать на хороший результат. Более того, восстановление в откликах часто указывает на клиническое выздоровление.

Лонг и Аллен[12] были первыми исследователями, сообщившими о ненормальных слуховых (аудио) вызванных потенциалах ствола мозга (стволовых аудио вызванных потенциалов - САВП; англ.: brainstem auditory evoked potentials - BAEPs)) у женщины-алкоголички, которая выздоровела от синдрома приобретенной центральной гиповентиляции. Эти исследователи выдвинули гипотезу о том, что ствол мозга их пациентки был отравлен, но не разрушен ее хроническим алкоголизмом.

Стабильно вызванный потенциал

Вызванный потенциал - это электрический ответ мозга на сенсорный стимул. Риган создал аналоговый анализатор рядов Фурье для записи гармоник вызванного потенциала на мерцающий (синусоидально модулированный) свет. Вместо того, чтобы интегрировать синусоидальные и косинусные части, Риган подавал сигналы на двухрежимный рекордер через фильтры нижних частот. [13] Это позволило ему показать, что мозг достигает стационарного режима, в котором амплитуда и фаза гармоник (частотных составляющих) отклика становилась примерно постоянными по времени. По аналогии с установившимся откликом резонансного контура, который следует за начальным переходным откликом, он определил идеализированный устойчивый вызванный потенциал (УВП; англ.: idealized steady-state evoked potential - SSEP) как форму отклика на повторяющуюся сенсорную стимуляцию, в которой составляющие частотные составляющие отклика остаются постоянными со временем как по амплитуде, так и по фазе.[13][14] Хотя это определение подразумевает серию идентичных временных сигналов, более полезно определить УВП в терминах частотных компонентов, которые являются альтернативным описанием сигнала во временной области, потому что разные частотные компоненты могут иметь совершенно разные свойства.[14][15] Например, свойства высокочастотного мерцания УВП (пиковая амплитуда которого составляет около 40–50 Hz) соответствуют свойствам впоследствии обнаруженных крупноклеточных (magnocellular) нейронов в сетчатке обезьяны макаки, в то время как свойства среднечастотного мерцания УВП (пик амплитуды которого составляет около 15–20 Hz) соответствуют свойствам мелкоклеточных (parvocellular) нейронов.[16] Поскольку УВП может быть полностью описан в терминах амплитуды и фазы каждого частотного компонента, то он может быть определен количественно более однозначно, чем усредненный переходный вызванный потенциал.

Иногда утверждают, что УВП вызываются только стимулами с высокой частотой повторения, но это не всегда правильно. В принципе, синусоидально-модулированный стимул может вызывать УВП, даже если его частота повторения низкая. В соотвествии с крутизной высокочастотной части УВП высокочастотная стимуляция может привести к почти синусоидальной форме волны УВП, но это не относится к определению УВП. Используя zoom-FFT для записи УВП с теоретическим пределом спектрального разрешения ΔF (где ΔF в Гц - обратная величина длительности записи в секундах), Риган и Риган обнаружили, что амплитудно-фазовая изменчивость УВП может быть достаточно малой, чтобы полоса пропускания составляющих частотных компонентов УВП может находиться на теоретическом пределе спектрального разрешения, по крайней мере, до 500-секундной длительности записи (в данном случае 0,002  Hz). [17] Повторяющаяся сенсорная стимуляция вызывает устойчивый магнитный отклик мозга, который можно анализировать так же, как УВП.[15]

Техника "одновременной стимуляции"

Этот метод позволяет одновременно регистрировать несколько (например, четыре) УВП из любого заданного местоположения на коже головы.[18] В различные местах стимуляции или разные стимулы могут быть с немного отличающимися частотами, которые практически идентичны мозгу, но легко разделяемыми анализаторами Фурье.[18] Например, когда два отличающихся источника света модулируются на несколько разных частотах (F1 и F2) и накладываются друг на друга, в УВП создаются множественные нелинейные компоненты перекрестной модуляции частоты (mF1 ± nF2), где m и n являются целыми числами.[15] Эти компоненты позволяют исследовать нелинейные процессы в мозге. Путем разметки частотами двух наложенных решеток можно выделить и изучить свойства пространственной частоты и настройки ориентации механизмов мозга, которые обрабатывают пространственную форму.[19][20] Стимулы различных сенсорных модальностей также могут быть помечены. Например, визуальный стимул мерцает частотой Fv Hz, и одновременно представленный слуховой тон был модулирован по амплитуде в Fa Hz. Наличие компонента (2Fv + 2Fa) в вызванном магнитном ответе мозга продемонстрировало область аудиовизуальной конвергенции в мозге человека, и распределение этого ответа по голове позволило локализовать эту область мозга.[21] В последнее время частотная маркировка была расширена от исследований сенсорной обработки до исследований избирательного внимания[22] и сознания.[23]

Техника "развертки"

Метод развертки - это гибридный метод частотной области/временной области. [24] Например, график зависимости амплитуды отклика от размера диаграммы структуры шахматного стимула можно получить за 10 секунд, что намного быстрее, чем при усреднении по временной области при записи вызванного потенциала для каждого из нескольких размеров. [24]

В первоначальной демонстрации этой техники синусоидальные и косинусоидальные составляющие подавались через фильтры нижних частот (как при записи УВП) при просмотре схемы точных проверок, чьи черные и белые квадраты менялись местами шесть раз в секунду. Затем размер квадратов постепенно увеличивался, чтобы получить график зависимости амплитуды вызванного потенциала от контрольного размера (отсюда и «развертка»). Последующие авторы внедрили технику развертки, используя компьютерное программное обеспечение для увеличения пространственной частоты решетки в серии небольших шагов и вычисления среднего значения во временной области для каждой дискретной пространственной частоты. [25][26]

Одной развертки может быть достаточно, но может потребоваться усреднить графики, полученные для несколько разверток, с помощью усреднения, запускаемого циклом развертки. [27] Усреднение 16 разверток может улучшить отношение сигнал/шум графика в четыре раза. [27]

Техника развертки оказалась полезной для измерения быстро адаптирующихся зрительных процессов. [28], а также для записи данных у детей, где продолжительность записи необходимо мала. Норсия и Тайлер использовали эту технику для документирования развития остроты зрения[25][29]и контрастной чувствительности [30] в первые годы жизни. Они подчеркнули, что при диагностике аномального зрительного развития, чем точнее нормы развития, тем точнее можно отличить аномальное от нормального, и с этой целью документировано нормальное зрительное развитие у большой группы детей.[25][29][30] В течение многих лет методика развертки использовалась в клиниках детской офтальмологии (электродиагностика) по всему миру.

Вызванные потенциалы и обратная связь

Этот метод позволяет УВП напрямую контролировать стимул, который вызывает УВП, без сознательного вмешательства субъекта эксперимента. [13][27] Например, скользящее среднее УВП могут быть выполнены с возможностью увеличения яркости стимула шахматной доски, если амплитуда УВП падает ниже некоторого заранее определенного значения, и уменьшения яркости, если она поднимается выше этого значения. Амплитуда УВП затем колеблется около этого заранее определенного значения. Далее постепенно изменяется длина волны (цвет) стимула. Полученный график зависимости яркости стимула от длины волны представляет собой график спектральной чувствительности зрительной системы.[14][27]

Визуально вызванный потенциал

Визуально вызванный потенциал (ВВП, англ. - VEP) - это потенциал, вызванный вспышкой света или демонстрацией визуального стимула-образца, которые могут быть использованы для выявления повреждения зрительного пути[31] включая сетчатку, зрительный нерв, перекрёст зрительных нервов, шаблон не поддерживает такой синтаксис и затылочной коры. [32] Одно из применений - измерение остроты зрения ребенка. Электроды помещаются на голову младенца над затылочной долей, а серое поле отображается попеременно с шахматной доской или решетчатым рисунком. Если контрольные поля или полосы достаточно велики, чтобы зрительная система ребёнка могла их обнаружить, генерируется ВВП; в противном случае ничего не генерируется. Это объективный способ измерения остроты зрения ребенка.[33]

ВВП может быть чувствительным к нарушениям зрения, которые не могут быть обнаружены только при физическом осмотре или МРТ, даже если он не может указывать на этиологию.[32] ВВП может быть аномальным при неврите зрительного нерва, оптическая нейропатия, демиелинизирующем заболевании, рассеянном склерозе, атаксии Фридрейха, дефиците витамина B12, нейросифилис, мигрень, ишемическая болезнь, опухоль, сдавливающая зрительный нерв, глазная гипертензия, глаукома, диабет, токсическая амблиопия, нейротоксичность алюминия, марганцевая интоксикация и травма головного мозга. [34] Его можно использовать для проверки нарушений зрения у ребенка на наличие аномальных путей зрения, которые могут быть связаны с задержкой развития.[32]

Компонент P100 ВВП, который является положительным пиком с задержкой около 100 мс, имеет большое клиническое значение. Дисфункция зрительного пути перед перекрёстом зрительных нервов может быть тем, где ВВП наиболее полезны. Например, у пациентов с острым тяжелым невритом зрительного нерва отклик P100 часто теряется или сильно ослаблен. Клиническое выздоровление и визуальное улучшение сопровождаются восстановлением P100, но с ненормально увеличенной задержкой, которая может длиться неопределенно долго, и, следовательно, это может быть полезным в качестве индикатора предыдущего или субклинического неврита зрительного нерва. [35]

В 1934 году Адриан и Мэтью заметили, что изменения потенциала затылочной ЭЭГ могут наблюдаться при стимуляции светом. Ciganek разработал первую номенклатуру для компонентов затылочной ЭЭГ в 1961 году. В течение того же года Hirsch и его коллеги зафиксировали визуально вызванный потенциал (ВВП) на затылочной доле (внешне и внутри), они обнаружили, что амплитуды, зарегистрированные вдоль шпорной борозды, были самыми большими. В 1965 году Шпельманн использовал стимуляцию шахматной доски для описания ВВП человека. Шикла и его коллеги завершили попытку локализации структур в первичном зрительном пути. Холлидей и его коллеги завершили первые клинические исследования с использованием ВВП, записав отсроченные ВВП у пациента с ретробульбарным невритом в 1972 году. С 1970-х годов до сегодняшнего дня было проведено большое количество обширных исследований с целью улучшения процедур и теорий. Также метод был описан и для животных. [36]

Стимулы ВВП

В наши дни стимул мерцающего рассеянного света редко используется из-за высокой изменчивости как у одного, так и в отношении разных субъектов. Однако этот тип стимула удобно использовать при тестировании младенцев, животных или лиц с плохой остротой зрения. В шахматном и решетчатом рисунках используются светлые и темные квадраты и полосы соответственно. Эти квадраты и полосы одинаковы по размеру и представлены по одному изображению на экране компьютера.

Размещение электродов для ВВП

Размещение электродов чрезвычайно важно для получения хорошего отклика ВВП без артефактов. В типичной (с одним каналом) установке один электрод расположен на 2.5 см выше наружного затылочного бугра (инион), а электрод сравнения расположен на Fz (см. Международная система размещения электродов «10—20»). Для получения большей детализации, два дополнительных электрода могут быть размещены на 2,5см над вправо и влево от Oz.

Волны ВВП

Нормальный визуально вызванный потенциал.

Номенклатура ВВП определяется с помощью заглавных букв, указывающих, является ли пик положительным (P) или отрицательным (N), за которым следует число, указывающее среднюю задержку пика для этой конкретной волны. Например, P100 - это волна с положительным пиком примерно через 100 мс после начала стимула. Средняя амплитуда для волн ВВП обычно нвходится между 5 и 20 мкВ.

Нормальные значения зависят от используемого оборудования стимуляции (стимул вспышка от электронно-лучевой трубки или жидкокристаллического дисплея, размера поля шахматной доски и т. д.).

Типы ВВП

Некоторые специфичные ВВП:

  • Монокулярный разворот (наиболее распространенный) (англ. Monocular pattern reversal (most common))
  • ВВП развёртки (англ. Sweep visual evoked potential)
  • Бинокулярный ВВП (англ. Binocular visual evoked potential)
  • Хроматический ВВП (англ. Chromatic visual evoked potential)
  • полу-польний ВВП (англ. Hemi-field visual evoked potential)
  • ВВП вспышкой (англ. Flash visual evoked potential)
  • LED Goggle ВВП
  • визуально вызванный потенциал движением (англ. Motion visual evoked potential)
  • Многофокальный ВВП (англ. Multifocal visual evoked potential)
  • Многоканальный ВВП (англ. Multi-channel visual evoked potential)
  • Многочастотный ВВП (англ. Multi-frequency visual evoked potential)
  • Стерео-вызванный ВВП (англ. Stereo-elicited visual evoked potential)
  • Устойчивый визуально вызванный потенциал (англ. Steady state visually evoked potential)

Аудио вызванный потенциал

Аудио вызванные потенциалы (АВП; англ. AEP) могут использоваться для отслеживания сигнала, генерируемого звуком, по восходящему слуховому пути. Вызванный потенциал генерируется в улитке, проходит через слуховой нерв, шаблон не поддерживает такой синтаксис, шаблон не поддерживает такой синтаксис, латеральную петлю, нижнее двухолмие в среднем мозге, медиальное коленчатое тело и, наконец, достигает кору.[37]

Аудио вызванные потенциалы (АВП, англ. AEO) являются подклассом потенциалов, связанных с событиями (ПСС; англ. ERP). ПСС - это реакции мозга, привязанные ко времени и некоторому «событию», такому как сенсорный стимул, психическое событие (такое как распознавание целевого стимула) или пропуск стимула. Для АВП «событие» - это звук. АВП (и ПСС) представляют собой очень малые потенциалы электрического напряжения мозга, которые регистрируются на скальпе в ответ на слуховой раздражитель, такой как различные тоны, речевые звуки и т. д.

шаблон не поддерживает такой синтаксис (САВП )- это небольшие АВП, являющиеся откликами на звуковой стимул, регистрируемых с помощью электродов, размещенных на скальпе.

АВП используются для оценки функционирования слуховой системы и нейропластичности.[38] Их можно использовать для диагностики нарушений обучаемости у детей, а также в разработке специализированных образовательных программ детей с проблемами со слухом или когнитивными функциями. [39]

Специфические техники и виды ПСС

Поскольку отдельные компоненты или комплексы компонентов ВП оказались весьма чувствительны к определенным видам психической деятельности, возникли специальные методики выделения тех или иных компонентов, а также методики анализа психических функций при помощи данных выделенных компонентов.

Наиболее значимые техники и виды ПСС:

Диагностика

У человека фиксируются, как правило, от поверхности головы при помощи специальных технических устройств. Виды:

  • первичные ответы, возникающие в первые 100 мс. после предъявления стимула,
  • вторичные, более поздние.

См. также

Потенциал, связанный с событием

Литература

  1. 1 2 evoked potential (EP) (неопр.) / VandenBos, Gary R.. — APA dictionary of psychology. — Washington, DC: American Psychological Association, 2015. — С. 390. — ISBN 978-1-4338-1944-5. — doi:10.1037/14646-000.
  2. Sugerman, Richard A. CHAPTER 15 - Structure and Function of the Neurologic System // Evoked Potentials (неопр.) / McCance, Kathryn L; Huether, Sue E; Brashers, Valentina L; Rote, Neal S.. — 7th. — Mosby, 2014. — ISBN 978-0-323-08854-1.
  3. Karl E. Misulis; Toufic Fakhoury. Spehlmann's Evoked Potential Primer (неопр.). — Butterworth-heinemann, 2001. — ISBN 978-0-7506-7333-4.
  4. 1 2 Kwasnica, Christina. Evoked Potentials (неопр.) / Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce. — Encyclopedia of Clinical Neuropsychology. — Springer, 2011. — С. 986. — ISBN 978-0-387-79947-6. — doi:10.1007/978-0-387-79948-3.
  5. Соколов Е. Н. ОЧЕРКИ ПО ПСИХОФИЗИОЛОГИИ СОЗНАНИЯ . ЧАСТЬ I. СФЕРИЧЕСКАЯ МОДЕЛЬ КОГНИТИВНЫХ ПРОЦЕССОВ. Глава 2. От карты детекторов — к карте памяти и карте семантических единиц/ ВЕСТН. МОСК. УН-ТА. СЕР. 14. ПСИХОЛОГИЯ. 2009. No 3 .(ФУНДАМЕНТАЛЬНАЯ НАУКА СЕГОДНЯ)
  6. Шагас Ч. Вызванные потенциалы в норме и патологии
  7. Зенков Л. Р., Ронкин М. А. Функциональная диагностика нервных болезней.
  8. Гнездицкий В. В. Вызванные потенциалы мозга в клинической практике.
  9. Steven J. Luck. Introduction to the Event-related Potential Technique.
  10. Наатанен Ристо. Внимание и функции мозга.
  11. O'Shea, R. P., Roeber, U., & Bach, M. (2010). Evoked potentials: Vision. In E. B. Goldstein (Ed.), Encyclopedia of Perception (Vol. 1, pp. 399-400, xli). Los Angeles: Sage. ISBN 978-1-4129-4081-8
  12. Long K. J., Allen N. Abnormal Brainstem Auditory Evoked Potentials Following Ondine's Curse (англ.) // JAMA : journal. — 1984. — Vol. 41, no. 10. — P. 1109—1110. — doi:10.1001/archneur.1984.04050210111028. — PMID 6477223.
  13. 1 2 3 Regan D. Some characteristics of average steady–state and transient responses evoked by modulated light (англ.) // Electroencephalography and Clinical Neurophysiology[англ.] : journal. — 1966. — Vol. 20, no. 3. — P. 238—248. — doi:10.1016/0013-4694(66)90088-5. — PMID 4160391.
  14. 1 2 3 Regan D. Electrical responses evoked from the human brain (англ.) // Scientific American. — Springer Nature, 1979. — Vol. 241, no. 6. — P. 134—146. — doi:10.1038/scientificamerican1279-134. — Bibcode1979SciAm.241f.134R. — PMID 504980.
  15. 1 2 3 Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier, 672 pp.
  16. Regan D.; Lee B.B. A comparison of the human 40 Hz response with the properties of macaque ganglion cells (англ.) // Visual Neuroscience : journal. — 1993. — Vol. 10, no. 3. — P. 439—445. — doi:10.1017/S0952523800004661. — PMID 8494797.
  17. Regan M.P.; Regan D. A frequency domain technique for characterizing nonlinearities in biological systems (англ.) // Journal of Theoretical Biology[англ.] : journal. — 1988. — Vol. 133, no. 3. — P. 293—317. — doi:10.1016/S0022-5193(88)80323-0.
  18. 1 2 Regan D.; Heron J.R. Clinical investigation of lesions of the visual pathway: a new objective technique (англ.) // Journal of Neurology, Neurosurgery, and Psychiatry[англ.] : journal. — 1969. — Vol. 32, no. 5. — P. 479—483. — doi:10.1136/jnnp.32.5.479. — PMID 5360055. — PMC 496563.
  19. Regan D.; Regan M.P. Objective evidence for phase–independent spatial frequency analysis in the human visual pathway (англ.) // Vision Research[англ.] : journal. — 1988. — Vol. 28, no. 1. — P. 187—191. — doi:10.1016/S0042-6989(88)80018-X. — PMID 3413995.
  20. Regan D.; Regan M.P. Nonlinearity in human visual responses to two–dimensional patterns and a limitation of Fourier methods (англ.) // Vision Research[англ.] : journal. — 1987. — Vol. 27, no. 12. — P. 2181—2183. — doi:10.1016/0042-6989(87)90132-5. — PMID 3447366.
  21. Regan M.P.; He P.; Regan D. An audio–visual convergence area in human brain (англ.) // Experimental Brain Research[англ.] : journal. — 1995. — Vol. 106, no. 3. — P. 485—487. — doi:10.1007/bf00231071. — PMID 8983992.
  22. Morgan S. T.; Hansen J. C.; Hillyard S. A. Selective attention to stimulus location modulates the steady-state evoked potential (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1996. — Vol. 93, no. 10. — P. 4770—4774. — doi:10.1073/pnas.93.10.4770. — PMID 8643478. — PMC 39354.
  23. Srinivasan R., Russell D. P., Edelman G. M., Tononi G. Increased synchronization of neuromagnetic responses during conscious perception (англ.) // Journal of Neuroscience[англ.] : journal. — 1999. — Vol. 19, no. 13. — P. 5435—5448. — doi:10.1523/JNEUROSCI.19-13-05435.1999. — PMID 10377353.
  24. 1 2 Regan D. Rapid objective refraction using evoked brain potentials (англ.) // Investigative Ophthalmology[англ.] : journal. — 1973. — Vol. 12, no. 9. — P. 669—679. — PMID 4742063.
  25. 1 2 3 Norcia A. M.; Tyler C. W. Infant VEP acuity measurements: Analysis of individual differences and measurement error (англ.) // Electroencephalography and Clinical Neurophysiology[англ.] : journal. — 1985. — Vol. 61, no. 5. — P. 359—369. — doi:10.1016/0013-4694(85)91026-0. — PMID 2412787.
  26. Strasburger, H.; Rentschler, I. A digital fast sweep technique for studying steady-state visual evoked potentials (англ.) // Journal of Electrophysiological Techniques : journal. — 1986. — Vol. 13, no. 5. — P. 265—278.
  27. 1 2 3 4 Regan D. Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques (англ.) // Vision Research[англ.] : journal. — 1975. — Vol. 15, no. 2. — P. 175—183. — doi:10.1016/0042-6989(75)90205-9. — PMID 1129975.
  28. Nelson J. I.; Seiple W. H.; Kupersmith M. J.; Carr R. E. A rapid evoked potential index of cortical adaptation (англ.) // Investigative Ophthalmology & Visual Science[англ.] : journal. — 1984. — Vol. 59, no. 6. — P. 454—464. — doi:10.1016/0168-5597(84)90004-2. — PMID 6209112.
  29. 1 2 Norcia A. M.; Tyler C. W. Spatial frequency sweep VEP: Visual acuity during the first year of life (англ.) // Vision Research[англ.] : journal. — 1985. — Vol. 25, no. 10. — P. 1399—1408. — doi:10.1016/0042-6989(85)90217-2. — PMID 4090273.
  30. 1 2 Norcia A. M.; Tyler C. W.; Allen D. Electrophysiological assessment of contrast sensitivity in human infants (англ.) // American Journal of Optometry and Physiological Optics[англ.] : journal. — 1986. — Vol. 63, no. 1. — P. 12—15. — doi:10.1097/00006324-198601000-00003. — PMID 3942183.
  31. visual-evoked potential (VEP) (неопр.) / O’Toole, Marie T.. — Mosby's Medical Dictionary. — Elsevier Mosby, 2013. — С. 1880. — ISBN 978-0-323-08541-0.
  32. 1 2 3 Flora Hammond; Lori Grafton. Visual Evoked Potentials (неопр.) / Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce. — Encyclopedia of Clinical Neuropsychology. — Springer, 2011. — С. 2628. — ISBN 978-0-387-79947-6. — doi:10.1007/978-0-387-79948-3.
  33. E Bruce Goldstein. Chapter 2: The Beginning of Perceptions // Sensation and Perception (неопр.). — 9th. — WADSWORTH: CENGAGE Learning, 2013. — С. Method: Peferential looking, p. 46. — ISBN 978-1-133-95849-9.
  34. Hammond, Grafton, 2011 cited Clinical utility of evoked potentials. eMedicine (2006). Дата обращения: 9 июля 2007.
  35. Aminoff, Michael J. 357. ELECTROPHYSIOLOGIC STUDIES OF THE CENTRAL AND PERIPHERAL NERVOUS SYSTEMS (неопр.) / Braunwald, Eugene; Fauci, Anthony S; Kasper, Dennis L; Hauser, Stephen L; Longo, Dan L; Jameson, J Larry. — 15th. — McGraw-Hill Education, 2001. — С. EVOKED POTENTIALS. — ISBN 0-07-007272-8.
  36. Strain, George M.; Jackson, Rose M.; Tedford, Bruce L. Visual Evoked Potentials in the Clinically Normal Dog (англ.) // Journal of Veterinary Internal Medicine[англ.] : journal. — 1990. — 1 July (vol. 4, no. 4). — P. 222—225. — ISSN 1939-1676. — doi:10.1111/j.1939-1676.1990.tb00901.x.
  37. Musiek, FE. The Auditory system / Musiek, FE, Baran, JA. — Boston, MA : Pearson Education, Inc., 2007.
  38. Sanju, Himanshu Kumar; Kumar, Prawin (2016). "Enhanced auditory evoked potentials in musicians: A review of recent findings". Journal of Otology. 11 (2): 63—72. doi:10.1016/j.joto.2016.04.002. ISSN 1672-2930. PMC 6002589. PMID 29937812.
  39. Frizzo, Ana C. F. (10 June 2015). "Auditory evoked potential: a proposal for further evaluation in children with learning disabilities". Frontiers in Psychology. 6: 788. doi:10.3389/fpsyg.2015.00788. PMC 4461809. PMID 26113833.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)